Construction of Three-Dimensional Scaffold for Tissue Engineered Heart Valves

Article Preview

Abstract:

Tissue engineered heart valve (TEHV) is a valve replacement of scaffold materials on which live cells grow. Theoretically, TEHV has good tissue compatibility, self-repair potential and life-long durability, which serves as the optimal replacement for a heart valve. As a result of the specific position and function of a specific heart valve, significantly high requirements of mechanical and biological properties are necessary for optimal function. A substantial number of studies suggested that the TEHV available at present has insufficient mechanical properties and lacks relevant anti-calcification function, both of which prevent the successful application of TEHV into clinical practice. A desirable valvular scaffold, which mimics the three-dimensional ultrastructures of extracellular matrix (ECM) in the heart valve, should possess the ECM bioactivity, favorable tissue compatibility and suitable mechanical properties. However, no such valve scaffold is currently available. Hence, clinical efforts should be made to remodel the scaffold materials, allowing for utilizing its functionalization. Here, we reviewed the scaffold materials previously used in TEHV, e.g. decellularized scaffold, polymer-based scaffold, nanoscaffold and nanocomposite scaffold and scaffold material modification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

627-634

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.A. Rippel, H. Ghanbari, A.M. Seifalian: Tissue-engineered heart valve: future of cardiac surgery. World journal of surgery, Vol. 36 (2012) No. 7, pp.1581-1591.

DOI: 10.1007/s00268-012-1535-y

Google Scholar

[2] S.S. Apte, A. Paul, S. Prakash, et al: Current developments in the tissue engineering of autologous heart valves: moving towards clinical use. Future cardiology, Vol. 7 (2011) No. 1, pp.77-97.

DOI: 10.2217/fca.10.120

Google Scholar

[3] Q. Chen, A. Bruyneel, K. Clarke, et al: Collagen-Based Scaffolds for Potential Application of Heart Valve Tissue Engineering. J Tissue Sci Eng S. 2012; Vol. 11, p.2.

DOI: 10.4172/2157-7552.s11-003

Google Scholar

[4] B. Duan, L.A. Hockaday, E. Kapetanovic, et al: Stiffness and Adhesivity Control Aortic Valve Interstitial Cell Behavior within Hyaluronic Acid Based Hydrogels. Acta biomaterialia. Vol. 9(2013) No. 8, p.7640–7650.

DOI: 10.1016/j.actbio.2013.04.050

Google Scholar

[5] P.E. Dijkman, A. Driessen-Mol, L. Frese, et al: Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno-and homografts. Biomaterials. Vol. 33 (2012) No. 18, pp.4545-4554.

DOI: 10.1016/j.biomaterials.2012.03.015

Google Scholar

[6] E.S. Place, J.H. George, C.K. Williams, et al: Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews. Vol. 38 (2009) No. 4, pp.1139-1151.

Google Scholar

[7] J. Shi, A.R. Votruba, O.C. Farokhzad, et al. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano letters. Vol. 10 (2010) No. 9, pp.3226-3230.

DOI: 10.1021/nl102184c

Google Scholar

[8] M.K. Sewell-Loftin, Y.W. Chun, A. Khademhosseini, et al: EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology. Journal of cardiovascular translational research. Vol. 4 (2011) No. 5, pp.663-668.

DOI: 10.1007/s12265-011-9300-4

Google Scholar

[9] Y.N. Chiu, R.A. Norris, G. Mahler, et al: Transforming Growth Factor β, Bone Morphogenetic Protein, and Vascular Endothelial Growth Factor Mediate Phenotype Maturation and Tissue Remodeling by Embryonic Valve Progenitor Cells: Relevance for Heart Valve Tissue Engineering. Tissue Engineering Part A. Vol. 16 (2010).

DOI: 10.1089/ten.tea.2010.0027

Google Scholar

[10] M.V. Stevens, D.M. Broka, P. Parker, et al: MEKK3 Initiates Transforming Growth Factor β2–Dependent Epithelial-to-Mesenchymal Transition During Endocardial Cushion Morphogenesis. Circulation research. Vol. 103 (2008) No. 12, pp.1430-1440.

DOI: 10.1161/circresaha.108.180752

Google Scholar

[11] K. Stankunas, G.K. Ma, F.J. Kuhnert, et al: VEGF signaling has distinct spatiotemporal roles during heart valve development. Developmental biology. Vol. 347 (2010) No. 2, pp.325-336.

DOI: 10.1016/j.ydbio.2010.08.030

Google Scholar

[12] M.D. Combs, K.E. Yutzey: Heart valve development regulatory networks in development and disease. Circulation research. Vol. 105 (2009) No. 5, pp.408-421.

DOI: 10.1161/circresaha.109.201566

Google Scholar

[13] H. Hong, G.N. Dong, W.J. Shi, et al: Fabrication of biomatrix/polymer hybrid scaffold for heart valve tissue engineering in vitro. ASAIO J. Vol. 54 (2008) No. 6, pp.627-632.

DOI: 10.1097/mat.0b013e31818965d3

Google Scholar

[14] K. Mendelson, F.J. Schoen: Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng. (2006); Vol. 34 No. 12, pp.1799-1819.

DOI: 10.1007/s10439-006-9163-z

Google Scholar

[15] A.G. Kidane, G. Burriesci, P. Cornejo, et al: Current developments and future prospects for heart valve replacement therapy. J Biomed Mater Res B Appl Biomater.; Vol. 88B (2009) No. 1, pp.290-303.

DOI: 10.1002/jbm.b.31151

Google Scholar

[16] P.M. Crapo, T.W. Gilbert, S.F. Badylak: An overview of tissue and whole organ decellularization processes. Biomaterials. Vol. 32 (2011) No. 12, pp.3233-3243.

DOI: 10.1016/j.biomaterials.2011.01.057

Google Scholar

[17] B. Weber, M.Y. Emmert, R. Schoenauer, et al: Tissue engineering on matrix: future of autologous tissue replacement[C]/Seminars in immunopathology. Springer-Verlag, Vol. 33 (2011) No. 3, pp.307-315.

DOI: 10.1007/s00281-011-0258-8

Google Scholar

[18] W. Konertz, E. Angeli, G. Tarusinov, et al: Right ventricular outflow tract reconstruction with decellularized porcine xenografts in patients with congenital heart disease. Journal of Heart Valve Disease. Vol. 20 (2011) No. 3, p.341.

Google Scholar

[19] S. Cebotari, I. Tudorache, A. Ciubotaru, et al: Use of Fresh Decellularized Allografts for Pulmonary Valve Replacement May Reduce the Reoperation Rate in Children and Young Adults Early Report. Circulation.; Vol. 124 (2011).

DOI: 10.1161/circulationaha.110.012161

Google Scholar

[20] I. Vesely: Heart valve tissue engineering. Circulation research. Vol. 97 (2005) No. 8, pp.743-747.

Google Scholar

[21] J. Zhou, O. Fritze, M Schleicher., et al: Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. Vol. 31 (2010) No. 9, pp.2549-2554.

DOI: 10.1016/j.biomaterials.2009.11.088

Google Scholar

[22] O. Bloch, W. Erdbrügger, W. V?lker: et al: Extracellular matrix in deoxycholic acid decellularized aortic heart valves. Medical science monitor: international medical journal of experimental and clinical research. Vol. 18 (2012).

DOI: 10.12659/msm.883618

Google Scholar

[23] J. Dong, Y. Li, X. Mo: The study of a new detergent (octyl-glucopyranoside) for decellularizing porcine pericardium as tissue engineering scaffold. Journal of Surgical Research. Vol. 183(2012) No. 1, pp.56-67.

DOI: 10.1016/j.jss.2012.11.047

Google Scholar

[24] M. Kasimir, E. Rieder, G. Seebacher, et al: Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. Journal of Heart Valve Disease. Vol. 15 (2006) No. 2, p.278.

Google Scholar

[25] Z. Zhang, Y. Lai, L. Yu, et al: Effects of immobilizing sites of RGD peptides in amphiphilic block copolymers on efficacy of cell adhesion. Biomaterials. Vol. 31 (2010) No. 31, pp.7873-7882.

DOI: 10.1016/j.biomaterials.2010.07.014

Google Scholar

[26] S. Müller, G. Koenig, A. Charpiot, et al: VEGF-Functionalized Polyelectrolyte Multilayers as Proangiogenic Prosthetic Coatings. Advance Functional Materials. Vol. 18 (2008) No. 12, pp.1767-1775.

DOI: 10.1002/adfm.200701233

Google Scholar

[27] U. Hersel, C. Dahmen, H. Kessler: RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. Vol. 24 (2003) No. 24, pp.4385-4415.

DOI: 10.1016/s0142-9612(03)00343-0

Google Scholar

[28] A.H. Zisch, M.P. Lutolf, M. Ehrbar, et al: Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. The FASEB journal. Vol. 17 (2003) No. 15, pp.2260-2262.

DOI: 10.1096/fj.02-1041fje

Google Scholar

[29] E.A. Phelps, N.O. Enemchukwu, V.F. Fiore, et al: Maleimide Cross-Linked Bioactive PEG Hydrogel Exhibits Improved Reaction Kinetics and Cross-Linking for Cell Encapsulation and In Situ Delivery. Advanced Materials. Vol. 24 (2012) No. 1, pp.64-70.

DOI: 10.1002/adma.201103574

Google Scholar

[30] L.J. De Cock, S. De Koker, F. De Vos, et al: Layer-by-layer incorporation of growth factors in decellularized aortic heart valve leaflets. Biomacromolecules. Vol. 11 (2010) No. 4, pp.1002-1008.

DOI: 10.1021/bm9014649

Google Scholar

[31] X. Ye, H. Wang, J. Zhou, et al: The Effect of Heparin-VEGF Multilayer on the Biocompatibility of Decellularized Aortic Valve with Platelet and Endothelial Progenitor Cells. PloS one. Vol. 8 (2013) No. 1, p. e54622.

DOI: 10.1371/journal.pone.0054622

Google Scholar

[32] X. Ye, Q. Zhao, X. Sun, et al: Enhancement of mesenchymal stem cell attachment to decellularized porcine aortic valve scaffold by in vitro coating with antibody against CD90: a preliminary study on antibody-modified tissue-engineered heart valve. Tissue Engineering Part A. Vol. 15 (2008).

DOI: 10.1089/ten.tea.2008.0001

Google Scholar

[33] Z.O.U. Ming-hui, Z. Jian-liang, C. Yi-chu, et al: Crosslinking effects of branched PEG diacrylate on decellularized porcine aortic valve scaffolds for tissue engineering. Chinese Journal of Clinicians. Vol. 5 (2011) No. 8, pp.2191-2196.

Google Scholar

[34] M. Schleicher, H.P. Wendel, O. Fritze, et al: In vivo tissue engineering of heart valves: evolution of a novel concept. Regenerative medicine. Vol. 4 (2009) No. 4, pp.613-619.

DOI: 10.2217/rme.09.22

Google Scholar

[35] P. Fong, T. Shin'oka, R.I. Lopez-Soler, et al: The use of polymer based scaffolds in tissue-engineered heart valves. Progress in Pediatric cardiology. Vol. 21 (2006) No. 2, pp.193-198.

DOI: 10.1016/j.ppedcard.2005.11.007

Google Scholar

[36] C.A. Durst, M.P. Cuchiara, E.G. Mansfield, et al: Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomaterialia. Vol. 7 (2011) No. 6, pp.2467-2469.

DOI: 10.1016/j.actbio.2011.02.018

Google Scholar

[37] T. Shinoka, C.K. Breuer, R.E. Tanel, et al: Tissue engineering heart valves: valve leaflet replacement study in a lamb model. The Annals of thoracic surgery. Vol. 60 (1995) p. S513-S516.

DOI: 10.1016/s0003-4975(21)01185-1

Google Scholar

[38] K. Ragaert, F. De Somer, I. De Baere, et al: Production & evaluation of PCL scaffolds for tissue engineered heart valves. Advances in Production Engineering & Management Journal, Vol. 6 (2011) No. 3, pp.163-165.

Google Scholar

[39] N. Masoumi, K.L. Johnson, M.C. Howell, et al: Valvular interstitial cell seeded poly (glycerol sebacate) scaffolds: Toward a biomimetic in vitro model for heart valve tissue engineering. Acta biomaterialia. Vol. 9 (2013) No. 4, pp.5974-5988.

DOI: 10.1016/j.actbio.2013.01.001

Google Scholar

[40] S. Sant, D. Iyer, A. Gaharwar, et al: Effect of biodegradation and de novo matrix synthesis on the mechanical properties of VIC-seeded PGS-PCL scaffolds. Acta biomaterialia. Vol. 9 (2012) No. 4, p.5963–5973.

DOI: 10.1016/j.actbio.2012.11.014

Google Scholar

[41] P.E. Dijkman, A. Driessen-Mol, L.M. de Heer, et al: Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves. The Journal of heart valve disease. Vol. 21 (2012) No. 5, pp.670-678.

Google Scholar

[42] M.Y. Emmert, B. Weber, P. Wolint, et al: Stem Cell–Based Transcatheter Aortic Valve ImplantationFirst Experiences in a Pre-Clinical Model. JACC: Cardiovascular Interventions. Vol. 5 (2012) No. 8, pp.874-883.

DOI: 10.1016/j.jcin.2012.04.010

Google Scholar

[43] Hydrogels with well-defined peptide-hydrogel spacing andconcentration: impact on epithelial cell behavior.

Google Scholar

[44] J. Zhu, P. He, L. Lin, et al: Biomimetic poly (ethylene glycol)-based hydrogels as scaffolds for inducing endothelial adhesion and capillary-like network formation. Biomacromolecules. Vol. 13 (2012) No. 3, pp.706-713.

DOI: 10.1021/bm201596w

Google Scholar

[45] J.A. Benton, B.D. Fairbanks, K.S. Anseth: Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels Biomaterials. Vol. 30 (2009) No. 34, pp.6593-6603.

DOI: 10.1016/j.biomaterials.2009.08.031

Google Scholar

[46] J. Zhu: Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials. Vol. 31 (2010) No. 17, pp.4639-4645.

DOI: 10.1016/j.biomaterials.2010.02.044

Google Scholar

[47] S. Brody, T. Anilkumar, S. Liliensiek, et al: Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design. Tissue engineering. Vol. 12 (2006) No. 2, pp.415-420.

DOI: 10.1089/ten.2006.12.ft-27

Google Scholar

[48] C.P. Barnes, S.A. Sell, E.D. Boland, et al: Nanofiber technology: designing the next generation of tissue engineering scaffolds. Advanced drug delivery reviews. Vol. 59 (2007) No. 14): 1413-1420.

DOI: 10.1016/j.addr.2007.04.022

Google Scholar

[49] B. Rahmani, S. Tzamtzis, H. Ghanbari, et al: Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. Journal of biomechanics, Vol. 45 (2012) No. 7, pp.1205-1211.

DOI: 10.1016/j.jbiomech.2012.01.046

Google Scholar

[50] H. Ghanbari, A.G. Kidane, G. Burriesci, et al: The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve. Acta biomaterialia. Vol. 6 (2010).

DOI: 10.1016/j.actbio.2010.06.015

Google Scholar

[51] A.G. Kidane, G. Burriesci, M. Edirisinghe, et al: A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta biomaterialia. Vol. 5 (2009) No. 7, pp.2409-2417.

DOI: 10.1016/j.actbio.2009.02.025

Google Scholar

[52] M.N. Giraud, A.G. Guex, H.T. Tevaearai: Cell therapies for heart function recovery: focus on myocardial tissue engineering and nanotechnologies. Cardiology research and practice, (2012) No. (2012).

DOI: 10.1155/2012/971614

Google Scholar

[53] H. Naderi, M.M. Matin, A.R. Bahrami: Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. Journal of biomaterials applications. Vol. 26 (2011) No. 4, pp.383-417.

DOI: 10.1177/0885328211408946

Google Scholar

[54] K. Lee, E.A. Silva, D.J. Mooney: Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. Journal of The Royal Society Interface. Vol. 8 (2011) No. 55, pp.153-170.

DOI: 10.1098/rsif.2010.0223

Google Scholar

[55] P.M. Dohmen, A. Lembcke, H. Hotz, et al: Ross operation with a tissue-en-gineered heart valve. The Annals of thoracic surgery. Vol. 74 (2002) No. 5, pp.1438-1442.

DOI: 10.1016/s0003-4975(02)03881-x

Google Scholar

[56] P.M. Dohmen, A. Lembcke, S. Holinski, et al: Ten years of clinical results with a tissue-engineered pulmonary valve. The Annals of thoracic surgery. 92 2011 No. 4, pp.1308-1314.

DOI: 10.1016/j.athoracsur.2011.06.009

Google Scholar

[57] P. Simon, M.T. Kasimir, G. Seebacher, et al: Early failure of the tissue engineered porcine heart valve SYNERGRAFT? in pediatric patients. European Journal of Cardio-Thoracic Surgery. Vol. 23 (2003) No. 6, pp.1002-1006.

DOI: 10.1016/s1010-7940(03)00094-0

Google Scholar

[58] M.Y. Emmert, B. Weber, L. Behr, et al: Transapical Aortic Implantation of Autologous Marrow Stromal Cell-Based Tissue-Engineered Heart Valves First Experiences in the Systemic Circulation. JACC: Cardiovascular Interventions. Vol. 4 (2011).

DOI: 10.1016/j.jcin.2011.02.020

Google Scholar