[1]
R.A. Rippel, H. Ghanbari, A.M. Seifalian: Tissue-engineered heart valve: future of cardiac surgery. World journal of surgery, Vol. 36 (2012) No. 7, pp.1581-1591.
DOI: 10.1007/s00268-012-1535-y
Google Scholar
[2]
S.S. Apte, A. Paul, S. Prakash, et al: Current developments in the tissue engineering of autologous heart valves: moving towards clinical use. Future cardiology, Vol. 7 (2011) No. 1, pp.77-97.
DOI: 10.2217/fca.10.120
Google Scholar
[3]
Q. Chen, A. Bruyneel, K. Clarke, et al: Collagen-Based Scaffolds for Potential Application of Heart Valve Tissue Engineering. J Tissue Sci Eng S. 2012; Vol. 11, p.2.
DOI: 10.4172/2157-7552.s11-003
Google Scholar
[4]
B. Duan, L.A. Hockaday, E. Kapetanovic, et al: Stiffness and Adhesivity Control Aortic Valve Interstitial Cell Behavior within Hyaluronic Acid Based Hydrogels. Acta biomaterialia. Vol. 9(2013) No. 8, p.7640–7650.
DOI: 10.1016/j.actbio.2013.04.050
Google Scholar
[5]
P.E. Dijkman, A. Driessen-Mol, L. Frese, et al: Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno-and homografts. Biomaterials. Vol. 33 (2012) No. 18, pp.4545-4554.
DOI: 10.1016/j.biomaterials.2012.03.015
Google Scholar
[6]
E.S. Place, J.H. George, C.K. Williams, et al: Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews. Vol. 38 (2009) No. 4, pp.1139-1151.
Google Scholar
[7]
J. Shi, A.R. Votruba, O.C. Farokhzad, et al. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano letters. Vol. 10 (2010) No. 9, pp.3226-3230.
DOI: 10.1021/nl102184c
Google Scholar
[8]
M.K. Sewell-Loftin, Y.W. Chun, A. Khademhosseini, et al: EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology. Journal of cardiovascular translational research. Vol. 4 (2011) No. 5, pp.663-668.
DOI: 10.1007/s12265-011-9300-4
Google Scholar
[9]
Y.N. Chiu, R.A. Norris, G. Mahler, et al: Transforming Growth Factor β, Bone Morphogenetic Protein, and Vascular Endothelial Growth Factor Mediate Phenotype Maturation and Tissue Remodeling by Embryonic Valve Progenitor Cells: Relevance for Heart Valve Tissue Engineering. Tissue Engineering Part A. Vol. 16 (2010).
DOI: 10.1089/ten.tea.2010.0027
Google Scholar
[10]
M.V. Stevens, D.M. Broka, P. Parker, et al: MEKK3 Initiates Transforming Growth Factor β2–Dependent Epithelial-to-Mesenchymal Transition During Endocardial Cushion Morphogenesis. Circulation research. Vol. 103 (2008) No. 12, pp.1430-1440.
DOI: 10.1161/circresaha.108.180752
Google Scholar
[11]
K. Stankunas, G.K. Ma, F.J. Kuhnert, et al: VEGF signaling has distinct spatiotemporal roles during heart valve development. Developmental biology. Vol. 347 (2010) No. 2, pp.325-336.
DOI: 10.1016/j.ydbio.2010.08.030
Google Scholar
[12]
M.D. Combs, K.E. Yutzey: Heart valve development regulatory networks in development and disease. Circulation research. Vol. 105 (2009) No. 5, pp.408-421.
DOI: 10.1161/circresaha.109.201566
Google Scholar
[13]
H. Hong, G.N. Dong, W.J. Shi, et al: Fabrication of biomatrix/polymer hybrid scaffold for heart valve tissue engineering in vitro. ASAIO J. Vol. 54 (2008) No. 6, pp.627-632.
DOI: 10.1097/mat.0b013e31818965d3
Google Scholar
[14]
K. Mendelson, F.J. Schoen: Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng. (2006); Vol. 34 No. 12, pp.1799-1819.
DOI: 10.1007/s10439-006-9163-z
Google Scholar
[15]
A.G. Kidane, G. Burriesci, P. Cornejo, et al: Current developments and future prospects for heart valve replacement therapy. J Biomed Mater Res B Appl Biomater.; Vol. 88B (2009) No. 1, pp.290-303.
DOI: 10.1002/jbm.b.31151
Google Scholar
[16]
P.M. Crapo, T.W. Gilbert, S.F. Badylak: An overview of tissue and whole organ decellularization processes. Biomaterials. Vol. 32 (2011) No. 12, pp.3233-3243.
DOI: 10.1016/j.biomaterials.2011.01.057
Google Scholar
[17]
B. Weber, M.Y. Emmert, R. Schoenauer, et al: Tissue engineering on matrix: future of autologous tissue replacement[C]/Seminars in immunopathology. Springer-Verlag, Vol. 33 (2011) No. 3, pp.307-315.
DOI: 10.1007/s00281-011-0258-8
Google Scholar
[18]
W. Konertz, E. Angeli, G. Tarusinov, et al: Right ventricular outflow tract reconstruction with decellularized porcine xenografts in patients with congenital heart disease. Journal of Heart Valve Disease. Vol. 20 (2011) No. 3, p.341.
Google Scholar
[19]
S. Cebotari, I. Tudorache, A. Ciubotaru, et al: Use of Fresh Decellularized Allografts for Pulmonary Valve Replacement May Reduce the Reoperation Rate in Children and Young Adults Early Report. Circulation.; Vol. 124 (2011).
DOI: 10.1161/circulationaha.110.012161
Google Scholar
[20]
I. Vesely: Heart valve tissue engineering. Circulation research. Vol. 97 (2005) No. 8, pp.743-747.
Google Scholar
[21]
J. Zhou, O. Fritze, M Schleicher., et al: Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. Vol. 31 (2010) No. 9, pp.2549-2554.
DOI: 10.1016/j.biomaterials.2009.11.088
Google Scholar
[22]
O. Bloch, W. Erdbrügger, W. V?lker: et al: Extracellular matrix in deoxycholic acid decellularized aortic heart valves. Medical science monitor: international medical journal of experimental and clinical research. Vol. 18 (2012).
DOI: 10.12659/msm.883618
Google Scholar
[23]
J. Dong, Y. Li, X. Mo: The study of a new detergent (octyl-glucopyranoside) for decellularizing porcine pericardium as tissue engineering scaffold. Journal of Surgical Research. Vol. 183(2012) No. 1, pp.56-67.
DOI: 10.1016/j.jss.2012.11.047
Google Scholar
[24]
M. Kasimir, E. Rieder, G. Seebacher, et al: Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. Journal of Heart Valve Disease. Vol. 15 (2006) No. 2, p.278.
Google Scholar
[25]
Z. Zhang, Y. Lai, L. Yu, et al: Effects of immobilizing sites of RGD peptides in amphiphilic block copolymers on efficacy of cell adhesion. Biomaterials. Vol. 31 (2010) No. 31, pp.7873-7882.
DOI: 10.1016/j.biomaterials.2010.07.014
Google Scholar
[26]
S. Müller, G. Koenig, A. Charpiot, et al: VEGF-Functionalized Polyelectrolyte Multilayers as Proangiogenic Prosthetic Coatings. Advance Functional Materials. Vol. 18 (2008) No. 12, pp.1767-1775.
DOI: 10.1002/adfm.200701233
Google Scholar
[27]
U. Hersel, C. Dahmen, H. Kessler: RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. Vol. 24 (2003) No. 24, pp.4385-4415.
DOI: 10.1016/s0142-9612(03)00343-0
Google Scholar
[28]
A.H. Zisch, M.P. Lutolf, M. Ehrbar, et al: Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. The FASEB journal. Vol. 17 (2003) No. 15, pp.2260-2262.
DOI: 10.1096/fj.02-1041fje
Google Scholar
[29]
E.A. Phelps, N.O. Enemchukwu, V.F. Fiore, et al: Maleimide Cross-Linked Bioactive PEG Hydrogel Exhibits Improved Reaction Kinetics and Cross-Linking for Cell Encapsulation and In Situ Delivery. Advanced Materials. Vol. 24 (2012) No. 1, pp.64-70.
DOI: 10.1002/adma.201103574
Google Scholar
[30]
L.J. De Cock, S. De Koker, F. De Vos, et al: Layer-by-layer incorporation of growth factors in decellularized aortic heart valve leaflets. Biomacromolecules. Vol. 11 (2010) No. 4, pp.1002-1008.
DOI: 10.1021/bm9014649
Google Scholar
[31]
X. Ye, H. Wang, J. Zhou, et al: The Effect of Heparin-VEGF Multilayer on the Biocompatibility of Decellularized Aortic Valve with Platelet and Endothelial Progenitor Cells. PloS one. Vol. 8 (2013) No. 1, p. e54622.
DOI: 10.1371/journal.pone.0054622
Google Scholar
[32]
X. Ye, Q. Zhao, X. Sun, et al: Enhancement of mesenchymal stem cell attachment to decellularized porcine aortic valve scaffold by in vitro coating with antibody against CD90: a preliminary study on antibody-modified tissue-engineered heart valve. Tissue Engineering Part A. Vol. 15 (2008).
DOI: 10.1089/ten.tea.2008.0001
Google Scholar
[33]
Z.O.U. Ming-hui, Z. Jian-liang, C. Yi-chu, et al: Crosslinking effects of branched PEG diacrylate on decellularized porcine aortic valve scaffolds for tissue engineering. Chinese Journal of Clinicians. Vol. 5 (2011) No. 8, pp.2191-2196.
Google Scholar
[34]
M. Schleicher, H.P. Wendel, O. Fritze, et al: In vivo tissue engineering of heart valves: evolution of a novel concept. Regenerative medicine. Vol. 4 (2009) No. 4, pp.613-619.
DOI: 10.2217/rme.09.22
Google Scholar
[35]
P. Fong, T. Shin'oka, R.I. Lopez-Soler, et al: The use of polymer based scaffolds in tissue-engineered heart valves. Progress in Pediatric cardiology. Vol. 21 (2006) No. 2, pp.193-198.
DOI: 10.1016/j.ppedcard.2005.11.007
Google Scholar
[36]
C.A. Durst, M.P. Cuchiara, E.G. Mansfield, et al: Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomaterialia. Vol. 7 (2011) No. 6, pp.2467-2469.
DOI: 10.1016/j.actbio.2011.02.018
Google Scholar
[37]
T. Shinoka, C.K. Breuer, R.E. Tanel, et al: Tissue engineering heart valves: valve leaflet replacement study in a lamb model. The Annals of thoracic surgery. Vol. 60 (1995) p. S513-S516.
DOI: 10.1016/s0003-4975(21)01185-1
Google Scholar
[38]
K. Ragaert, F. De Somer, I. De Baere, et al: Production & evaluation of PCL scaffolds for tissue engineered heart valves. Advances in Production Engineering & Management Journal, Vol. 6 (2011) No. 3, pp.163-165.
Google Scholar
[39]
N. Masoumi, K.L. Johnson, M.C. Howell, et al: Valvular interstitial cell seeded poly (glycerol sebacate) scaffolds: Toward a biomimetic in vitro model for heart valve tissue engineering. Acta biomaterialia. Vol. 9 (2013) No. 4, pp.5974-5988.
DOI: 10.1016/j.actbio.2013.01.001
Google Scholar
[40]
S. Sant, D. Iyer, A. Gaharwar, et al: Effect of biodegradation and de novo matrix synthesis on the mechanical properties of VIC-seeded PGS-PCL scaffolds. Acta biomaterialia. Vol. 9 (2012) No. 4, p.5963–5973.
DOI: 10.1016/j.actbio.2012.11.014
Google Scholar
[41]
P.E. Dijkman, A. Driessen-Mol, L.M. de Heer, et al: Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves. The Journal of heart valve disease. Vol. 21 (2012) No. 5, pp.670-678.
Google Scholar
[42]
M.Y. Emmert, B. Weber, P. Wolint, et al: Stem Cell–Based Transcatheter Aortic Valve ImplantationFirst Experiences in a Pre-Clinical Model. JACC: Cardiovascular Interventions. Vol. 5 (2012) No. 8, pp.874-883.
DOI: 10.1016/j.jcin.2012.04.010
Google Scholar
[43]
Hydrogels with well-defined peptide-hydrogel spacing andconcentration: impact on epithelial cell behavior.
Google Scholar
[44]
J. Zhu, P. He, L. Lin, et al: Biomimetic poly (ethylene glycol)-based hydrogels as scaffolds for inducing endothelial adhesion and capillary-like network formation. Biomacromolecules. Vol. 13 (2012) No. 3, pp.706-713.
DOI: 10.1021/bm201596w
Google Scholar
[45]
J.A. Benton, B.D. Fairbanks, K.S. Anseth: Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels Biomaterials. Vol. 30 (2009) No. 34, pp.6593-6603.
DOI: 10.1016/j.biomaterials.2009.08.031
Google Scholar
[46]
J. Zhu: Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials. Vol. 31 (2010) No. 17, pp.4639-4645.
DOI: 10.1016/j.biomaterials.2010.02.044
Google Scholar
[47]
S. Brody, T. Anilkumar, S. Liliensiek, et al: Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design. Tissue engineering. Vol. 12 (2006) No. 2, pp.415-420.
DOI: 10.1089/ten.2006.12.ft-27
Google Scholar
[48]
C.P. Barnes, S.A. Sell, E.D. Boland, et al: Nanofiber technology: designing the next generation of tissue engineering scaffolds. Advanced drug delivery reviews. Vol. 59 (2007) No. 14): 1413-1420.
DOI: 10.1016/j.addr.2007.04.022
Google Scholar
[49]
B. Rahmani, S. Tzamtzis, H. Ghanbari, et al: Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. Journal of biomechanics, Vol. 45 (2012) No. 7, pp.1205-1211.
DOI: 10.1016/j.jbiomech.2012.01.046
Google Scholar
[50]
H. Ghanbari, A.G. Kidane, G. Burriesci, et al: The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve. Acta biomaterialia. Vol. 6 (2010).
DOI: 10.1016/j.actbio.2010.06.015
Google Scholar
[51]
A.G. Kidane, G. Burriesci, M. Edirisinghe, et al: A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta biomaterialia. Vol. 5 (2009) No. 7, pp.2409-2417.
DOI: 10.1016/j.actbio.2009.02.025
Google Scholar
[52]
M.N. Giraud, A.G. Guex, H.T. Tevaearai: Cell therapies for heart function recovery: focus on myocardial tissue engineering and nanotechnologies. Cardiology research and practice, (2012) No. (2012).
DOI: 10.1155/2012/971614
Google Scholar
[53]
H. Naderi, M.M. Matin, A.R. Bahrami: Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. Journal of biomaterials applications. Vol. 26 (2011) No. 4, pp.383-417.
DOI: 10.1177/0885328211408946
Google Scholar
[54]
K. Lee, E.A. Silva, D.J. Mooney: Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. Journal of The Royal Society Interface. Vol. 8 (2011) No. 55, pp.153-170.
DOI: 10.1098/rsif.2010.0223
Google Scholar
[55]
P.M. Dohmen, A. Lembcke, H. Hotz, et al: Ross operation with a tissue-en-gineered heart valve. The Annals of thoracic surgery. Vol. 74 (2002) No. 5, pp.1438-1442.
DOI: 10.1016/s0003-4975(02)03881-x
Google Scholar
[56]
P.M. Dohmen, A. Lembcke, S. Holinski, et al: Ten years of clinical results with a tissue-engineered pulmonary valve. The Annals of thoracic surgery. 92 2011 No. 4, pp.1308-1314.
DOI: 10.1016/j.athoracsur.2011.06.009
Google Scholar
[57]
P. Simon, M.T. Kasimir, G. Seebacher, et al: Early failure of the tissue engineered porcine heart valve SYNERGRAFT? in pediatric patients. European Journal of Cardio-Thoracic Surgery. Vol. 23 (2003) No. 6, pp.1002-1006.
DOI: 10.1016/s1010-7940(03)00094-0
Google Scholar
[58]
M.Y. Emmert, B. Weber, L. Behr, et al: Transapical Aortic Implantation of Autologous Marrow Stromal Cell-Based Tissue-Engineered Heart Valves First Experiences in the Systemic Circulation. JACC: Cardiovascular Interventions. Vol. 4 (2011).
DOI: 10.1016/j.jcin.2011.02.020
Google Scholar