The Heuristic Approach to the Selection of Experimental Design, Model and Valid Pre-Processing Transformation of DoE Outcome

Article Preview

Abstract:

The typical problem in design of experiments methodology is to avoid risk of obtaining predictions outside of ranges with technological or physical sense. Such situation occurs very often if a simple linear regression or other unbounded is involved as a predictive model. The possible solution is to provide mappings of the outcome from the range of interest into the full range from negative to plus infinity before the linear regression is applied. The intermediate values obtained from unbounded predictive model is re-transformed into the physical domain by the inverse transformation. The key issue is to decide if the mapping is required and subsequently what mapping is necessary. Author proposed a simple heuristic supporting this decision and tested such solution in some examples described in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-149

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.A. Fisher, Statistical Methods for Research Workers, Oliver and Boyd Press, Edinburgh (1925).

Google Scholar

[2] R.A. Fisher, The Arrangement of Field Experiments, J. Roy. Statist. Soc. 33 (1926) 503-513.

Google Scholar

[3] R.A. Fisher, The Design of Experiments, Oliver and Boyd Press, Edinburgh (1935).

Google Scholar

[4] F. Yates, Complex experiments, J. Roy. Statist. Soc. Suppl. 2 (1935) 181-247.

Google Scholar

[5] R.L. Plackett, J.P. Burman, The design of optimum multifactorial experiments, Biometrika 33 (1946) 305-325.

DOI: 10.1093/biomet/33.4.305

Google Scholar

[6] G.E.P. Box, K.B. Wilson, On the Experimental Attainment of Optimum Conditions, J. Roy. Stat. Soc. B 13 (1951) (1) 1-45.

Google Scholar

[7] G. Elfving, Optimum Allocation in Linear Regression Theory, Ann. Math. Stat. 23 (1952) (2) 255-262.

DOI: 10.1214/aoms/1177729442

Google Scholar

[8] J. Kiefer, J. Wolfowitz, Optimum Designs in Regression Problems, Ann. Math. Stat. 30 (1959) (2) 271-294.

DOI: 10.1214/aoms/1177706252

Google Scholar

[9] V.V. Fedorov, Theory of Optimal Experiments, Elsevier, (1972).

Google Scholar

[10] H. Chernoff, Sequential Analysis and Optimal Design, Harvard University, Cambridge, Massachusetts, (1972).

Google Scholar

[11] J. McElroy, Taguchi - Japans Secret Weapon, Automot. Ind. 164 (1984) (8) 18.

Google Scholar

[12] M.S. Phadke, Quality Engineering Using Robust Design, Prentice Hall International, Inc., London (1989).

Google Scholar

[13] O. Kempthorne, K. Hinkelmann, Design and analysis of experiments. Vol. 1. Introduction to experimental design, John Wiley & Sons, Hoboken, NJ, USA (1994).

Google Scholar

[14] O. Kempthorne, K. Hinkelmann, Design and analysis of experiments. Vol. 2. Advanced experimental design, John Wiley & Sons, Hoboken, NJ, USA (1994).

Google Scholar

[15] K. Hinkelmann, Editor, Design and analysis of experiments. Vol. 3. Special Designs and Applications, John Wiley & Sons, Hoboken, NJ, USA (2012).

Google Scholar

[16] ISO 3534-3: 2013, Statistics - Vocabulary and symbols - Part 3: Design of experiments, (2013).

Google Scholar

[17] R.L. Mason, R.F. Gunst, J.L. Hess, Statistical Design and Analysis of Experiments, John Wiley & Sons, Hoboken (1989).

Google Scholar

[18] S.S. Stevens, On the theory of scales of measurements, 103 (1946) 677-680.

Google Scholar

[19] W. Grzegożek, J. Szczygieł, M. Król, An Attempt of an Employment of a Continuous Wavelet Transform for Evaluation of Temporary Comfort Disturbance, J. KONES 16 (2009) 165-172.

Google Scholar

[20] J. Pietraszek, W. Grzegożek, J. Szczygieł, Forecasting of Subjective Comfort in Tram Using Ordinal Logistic Regression and Manifold Learning, 19 (2012) (2) 403-410.

DOI: 10.5604/12314005.1138238

Google Scholar

[21] A. Agresti, Categorical Data Analysis, John Wiley & Sons, Hoboken (2002).

Google Scholar

[22] J.M. Hilbe, Logistc Regression Models, CRC Press, Boca Raton (2009).

Google Scholar

[23] D.W. Hosmer, S. Lemeshow, Applied Logistic Regression, John Wiley & Sons, Hoboken (2000).

Google Scholar

[24] I.T. Jolliffe, Principal Component Analysis, Springer, New York (2002).

Google Scholar

[25] E. Skrzypczak-Pietraszek, J. Pietraszek, Chemical profile and seasonal variation of phenolic acid content in bastard balm (Melittis melissophyllum L., Lamiaceae), J Pharmaceut Biomed 66 (2012) 154-161.

DOI: 10.1016/j.jpba.2012.03.037

Google Scholar

[26] J. Pietraszek, Fuzzy Regression Compared to Classical Experimental Design in the Case of Flywheel Assembly, Lect Notes Artif Int 7267 (2012) 310-317.

DOI: 10.1007/978-3-642-29347-4_36

Google Scholar

[27] J. Pietraszek, N. Radek, DoE-based model for tribology of laser textured surfaces of silicon carbide, in: T. Łodygowski, J. Rakowski, T. Garbowski and W. Sumelka, (Eds. ), CMM-2013 - Computer Methods in Mechanics, 27-31. 08. 2013, Poznań, Poland, Poznań University of Technology (2013).

Google Scholar

[28] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Inc., Hoboken (2008).

Google Scholar

[29] J. Pietraszek, M. Kołomycki, E. Kocyłowska, The impact of CUDA technology on the efficiency of Blender renderer program, Czasopismo Techniczne 110 (2013) (1-M) 317-324.

Google Scholar

[30] P. Osocha, P. Duda, B. Weglowski, Determining temperature and stress changes in thick-walled elements of steam lines, Inz Chem Procesowa 25 (2004) (4) 2249-2256.

Google Scholar

[31] T. Styrylska, J. Pietraszek, Numerical Modeling of Non-Steady-State Temperature-Fields with Supplementary Data, Z Angew Math Mech 72 (1992) (6) T537-T539.

Google Scholar

[32] J. Pietraszek, A. Gądek-Moszczak, N. Radek, The Estimation of Accuracy for the Neural Network Approximation in the Case of Sintered Metal Properties, in: A. Badica, (Ed. ), Recent Developments in Computational Collective Intelligence., Studies in Computational Intelligence 513, Springer (2014).

DOI: 10.1007/978-3-319-01787-7_12

Google Scholar

[33] A. Gadek, S. Kuciel, L. Wojnar, W. Dziadur, Application of computer-aided analysis of an image for assessment of reinforced polymers structures, Polimery-W 51 (2006) (3) 206-211.

DOI: 10.14314/polimery.2006.206

Google Scholar

[34] A. Gadek-Moszczak, L. Wojnar, Objective, Quantitative and Automatic X-Ray Image. Analysis of the Bone Regenerate in the Ilizarov Method, (2009) 453-458.

Google Scholar

[35] A. Gadek-Moszczak, S. Zmudka, Description of 3D microstructure of the composites with polypropylene (PP) matrix and Tuf particles fillers, Solid State Phenom. 197 (2013) 186-191.

DOI: 10.4028/www.scientific.net/ssp.197.186

Google Scholar

[36] A. Szczotok, R. Przeliorz, Phase transformations in CMSX-4 nickel-base superalloy, IOP Conf. Ser. -Mat. Sci. 35 (2012).

DOI: 10.1088/1757-899x/35/1/012005

Google Scholar

[37] A. Szczotok, M. Sozanska, A Comparison of Grain Quantitative Evaluation Performed with Standard Method of Imaging with Light Microscopy and EBSD Analysis, Prakt Metallogr-Pr M 46 (2009) (9) 454-468.

DOI: 10.3139/147.110043

Google Scholar