The Optimization of the Technological Process with the Fuzzy Regression

Article Preview

Abstract:

The paper contains: problem definition, presentation of the measured data and the final analysis with the fuzzy regression approach. The benefits of such approach are shown in the case of small size samples. Both mentioned technological processes, the one from the automotive industry and the second from the biotechnological industry, have shown the significant benefits of using the fuzzy regression. In the case of small sample size problem, the results obtained from the fuzzy regression have significantly narrower spread in the comparison with the traditional confidence interval being very wide. The approach should also be useful for similar studies, when the probabilistic description of uncertainty is not possible for the reason of the time, the equipment or the financial limits. The developed method will be useful in eventual transition of the process from a laboratory scale to an industrial scale.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-155

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Dubois, H. Prade, Operations on Fuzzy Numbers, Int. J. Syst. Sci. 9 (1978) 613-626.

Google Scholar

[2] P. Grzegorzewski, Trapezoidal Approximation of Fuzzy Numbers Based on Sample Data, Comm. Com. Inf. Sc. 81 (2010) 402-411.

Google Scholar

[3] R. Tyrala, Linear System with Fuzzy Solution, in: P. Grzegorzewski, (Ed. ), Issues in Soft Computing, Theory and Applications, EXIT Press, Warszawa (2005), 277-288.

Google Scholar

[4] F. Campobasso, A. Fanizzi, Goodness of Fit Measures and Model Selection in a Fuzzy Least Squares Regression Analysis, Stud. Comput. Intell. 465 (2013) 241-257.

DOI: 10.1007/978-3-642-35638-4_16

Google Scholar

[5] P. D'Urso, T. Gastaldi, An orderwise, polynomial regression procedure for fuzzy data, Fuzzy Set Syst. 130 (2002) 1-19.

DOI: 10.1016/s0165-0114(02)00055-6

Google Scholar

[6] B. Gładysz, D. Kuchta, Polynomial Least Squares Fuzzy Regression Models for Temperature, in: A. Cader, (Ed. ), Artificial Intelligence and Soft Computing, EXIT Press, Warszawa (2006), 118-124.

Google Scholar

[7] H.W. Kuhn, A.W. Tucker, Nonlinear programming, Proceedings of 2nd Berkeley Symposium. Berkeley, University of California Press (1951), 481-492.

Google Scholar

[8] G.E.P. Box, N.R. Draper, Empirical Model-Building and Response Surface, John Wiley & Sons, Hoboken (1987).

Google Scholar

[9] O. Kempthorne, K. Hinkelmann, Design and Analysis of Experiments. Vol. 1. Introduction to experimental design, John Wiley & Sons, Inc., Hoboken (1994).

Google Scholar

[10] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Inc., Hoboken (2008).

Google Scholar

[11] R.H. Myers, D.C. Montgomery, Response Surface Methodology. Process and Product Optimization Using Designed Experiments, John Wiley & Sons, Hoboken (1995).

Google Scholar

[12] J. Pietraszek, Fuzzy Regression Compared to Classical Experimental Design in the Case of Flywheel Assembly, Lect. Notes Artif. Int. 7267 (2012) 310-317.

DOI: 10.1007/978-3-642-29347-4_36

Google Scholar

[13] E. Skrzypczak-Pietraszek, A. Szewczyk, A. Piekoszewska, H. Ekiert, Biotransformation of hydroquinone to arbutin in plant in vitro cultures preliminary results, Acta Physiol. Plant. 27 (2005) 79-87.

DOI: 10.1007/s11738-005-0039-x

Google Scholar

[14] B. Barrett, Medicinal properties of Echinacea: a critical review, Phytomedicine 10 (2003) 66-86.

DOI: 10.1078/094471103321648692

Google Scholar

[15] J.B. Hudson, Applications of the Phytomedicine Echinacea purpurea (Purple Coneflower) in Infectious Diseases, J. Biomed. Biotechnol. (2012) DOI: 10. 1155/2012/769896.

DOI: 10.1155/2012/769896

Google Scholar

[16] R. Schoop, P. Klein, A. Suter, S.L. Johnston, Echinacea in the prevention of induced rhinovirus colds: A meta-analysis, Clin. Ther. 28 (2006) 174-183.

DOI: 10.1016/j.clinthera.2006.02.001

Google Scholar

[17] M.A. Baque, S.H. Moh, E.J. Lee, J.J. Zhong, K.Y. Paek, Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor, Biotechnol. Adv. 30 (2012) 1255-1267.

DOI: 10.1016/j.biotechadv.2011.11.004

Google Scholar

[18] E. Skrzypczak-Pietraszek, J. Pietraszek, Phenolic acids in in vitro cultures of Exacum affine Balf. f., Acta Biol. Cracov. Bot. 51 (2009) 62-62.

DOI: 10.18388/abp.2014_1922

Google Scholar

[19] E. Skrzypczak-Pietraszek, A. Hensel, Polysaccharides from Melittis melissophyllum L. herb and callus, Pharmazie 55 (2000) 768-771.

Google Scholar

[20] E. Skrzypczak-Pietraszek, J. Pietraszek, Chemical profile and seasonal variation of phenolic acid content in bastard balm (Melittis melissophyllum L., Lamiaceae), J. Pharmaceut. Biomed. 66 (2012) 154-161.

DOI: 10.1016/j.jpba.2012.03.037

Google Scholar

[21] E. Skrzypczak-Pietraszek, J. Pietraszek, Application of fuzzy spread regression to analysis of biotechnological process efficiency, Studies and Proceedings of PAKM 42 (2011) 230-240.

Google Scholar