Factorial Approach to Assessment of GPU Computational Efficiency in Surrogate Models

Article Preview

Abstract:

Surrogate models are very useful to replace very accurate but time-consuming huge data numerical models. The process of construction and optimization of surrogate models may require large computational power. It may be delivered by multi-core CPU or by massively multi-core GPGPU. This paper presents a consistent approach to make quantitative assessment of the computational efficiency with different hardware configurations: with one and multi-core CPU and with GPGPU card. The design of experiments factorial approach is used to analysis of the obtained data. The linear main effects model with two-way interaction is identified. The results show that the investment to multi-core CPU and GPGPU cards simultaneously is impractical due to negligible effects of CPU efficiency which is masked by dominated GPGPU performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-162

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, Inc., Hoboken (1997).

Google Scholar

[2] M.S. Phadke, Quality Engineering Using Robust Design, Prentice Hall International, Inc., London (1989).

Google Scholar

[3] J. McElroy, Taguchi - Japans Secret Weapon, 164 (1984) 18.

Google Scholar

[4] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Inc., Hoboken (2008).

Google Scholar

[5] G.E.P. Box, N.R. Draper, Empirical Model-Building and Response Surface, John Wiley & Sons, Hoboken (1987).

Google Scholar

[6] R.H. Myers, D.C. Montgomery, Response Surface Methodology. Process and Product Optimization Using Designed Experiments, John Wiley & Sons, Hoboken (1995).

Google Scholar

[7] J. Pietraszek, Response surface methodology at irregular grids based on Voronoi scheme with neural network approximator, Adv. Soft Comp. (2003) 250-255.

DOI: 10.1007/978-3-7908-1902-1_35

Google Scholar

[8] T.P. Ryan, Modern Experimental Design, John Wiley & Sons, Inc., Hoboken (2007).

Google Scholar

[9] O. Kempthorne, K. Hinkelmann, Design and Analysis of Experiments. Vol. 1. Introduction to experimental design, John Wiley & Sons, Inc., Hoboken (1994).

Google Scholar

[10] I.T. Jolliffe, Principal Component Analysis, Springer, New York (2002).

Google Scholar

[11] E. Skrzypczak-Pietraszek, J. Pietraszek, Chemical profile and seasonal variation of phenolic acid content in bastard balm (Melittis melissophyllum L., Lamiaceae), J. Pharmaceut. Biomed. 66 (2012) 154-161.

DOI: 10.1016/j.jpba.2012.03.037

Google Scholar

[12] P. Osocha, P. Duda, B. Weglowski, Determining temperature and stress changes in thick-walled elements of steam lines, Inz. Chem. Procesowa 25 (2004) 2249-2256.

Google Scholar

[13] B. Weglowski, P. Osocha, Modelling of Creep for Y Pipe from Ferritic-Martensitic P91 Steel, Rynek Energii 6 (2009) 140-145.

Google Scholar

[14] P. Duda, Solution of multidimensional inverse heat conduction problem, Heat Mass Transfer 40 (2003) 115-122.

DOI: 10.1007/s00231-003-0426-z

Google Scholar

[15] D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, K. Crombecq, A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design, J. Mach. Learn Res. 11 (2010) 2051-(2055).

Google Scholar

[16] A. Gądek, S. Kuciel, L. Wojnar, W. Dziadur, Application of computer-aided analysis of an image for assessment of reinforced polymers structures, Polimery-W 51 (2006) 206-211.

DOI: 10.14314/polimery.2006.206

Google Scholar

[17] A. Gądek-Moszczak, L. Wojnar, Objective, Quantitative and Automatic X-Ray Image. Analysis of the Bone Regenerate in the Ilizarov Method, ECS10 The 10th European Congress of Stereology and Image Analysis (2009) 453-458.

Google Scholar

[18] A. Gądek-Moszczak, S. Żmudka, Description of 3D microstructure of the composites with polypropylene (PP) matrix and Tuf particles fillers, Solid State Phenom. 197 (2013) 186-191.

DOI: 10.4028/www.scientific.net/ssp.197.186

Google Scholar

[19] N. Radek, B. Antoszewski, The influence of laser treatment on the properties of electro-spark deposited coatings, Kovove Mater. 47 (2009) (1) 31-38.

Google Scholar

[20] N. Radek, E. Wajs, M. Luchka, The WC-Co electrospark alloying coatings modified by laser treatment, Powder Metall. Met. C+ 47 (2008) 197-201.

DOI: 10.1007/s11106-008-9005-7

Google Scholar

[21] P. Mazurek, Optimization of Memory Accesses for CUDA Architecture and Image Warping Algorithms, Adv. Intell. Syst. 184 (2013) 127-134.

DOI: 10.1007/978-3-642-32384-3_16

Google Scholar

[22] Minitab v. 16, Mintab, Inc. (2012).

Google Scholar

[23] S.S. Stevens, On the theory of scales of measurements, Science 103 (1946) 677-680.

Google Scholar