Mechanical Properties and Microstructure Analysis of Copper Tailings Solidifying with Different Cementitious Materials

Article Preview

Abstract:

With new type steel slag-blast furnace slag-fluorgypsum-based cemented material, P O42.5 cement, commonly used cementation agent in China, mechanical properties and microstructure of tailings solidification bodies are studied. The hydration products and morphology tailings concretion body in 60 days are analyzed by SEM and XRD test, which reveals the tailings cementation mechanism solidifying with different cementitious material. Furthermore, a large number of slender bar-like ettringite crystals and filamentous network-like calcium-silicate-hydrate gels bond firmly each other, which is the most important reason why steel slag-blast furnace slag-fluorgypsum base cemented material has the best tailings cementation mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

171-176

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Simón,F. Martín,I. Ortiz,I. García,J. Fernández,E. Fernández,C. Dorronsoro, J. Aguilar, Soil po- llution by oxidation of tailings from toxic spill of a pyrite mine, Sci. Total. Environ, 279(2001)63-74.

DOI: 10.1016/s0048-9697(01)00726-4

Google Scholar

[2] C.L. Chen, M. Liao, C.Y. Huang, Effect of combined pollution by heavy metals on soil enzymatic activities in areas polluted by tailings from Pb-Zn-Ag mine,J. Environ. Sci-China. 17 (2005)637- 640.

Google Scholar

[3] M. Fall, M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cem. Concr. Compos. 32 (2010) 819-828.

DOI: 10.1016/j.cemconcomp.2010.08.002

Google Scholar

[4] B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci , I. Alp , Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings,J. Hazard. Mater. 179 (2010)940-946.

DOI: 10.1016/j.jhazmat.2010.03.096

Google Scholar

[5] M. Fall, J.C. Celestin, M. Pokharel, M. Toure , A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geology. 114 (2010)397-413.

DOI: 10.1016/j.enggeo.2010.05.016

Google Scholar

[6] O. Nasir, M. Fall, Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages, Tunn. Undergr. Sp. Tech, 25(2010)90-20.

DOI: 10.1016/j.tust.2009.07.008

Google Scholar

[7] B. Ercikdi, A. Kesimal, F. Cihangir, H. Deveci, I. Alp, Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage, Cem. Concr. Compos, 31(2009)268-274.

DOI: 10.1016/j.cemconcomp.2009.01.008

Google Scholar

[8] S. Ouellet, B. Bussière, M. Aubertin,M. Benzaazoua, Characterization of cemented paste backfill pore structure using SEM and IA analysis, B Eng. Geol. Environ, 67(2008)139-152.

DOI: 10.1007/s10064-007-0117-y

Google Scholar

[9] B. Ercikdi, F. Cihangir, A. Kesimal, H. Deveci , I. Alp, Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphidemill tailings,J. Hazard. Mater, 168(2009)848-856.

DOI: 10.1016/j.jhazmat.2009.02.100

Google Scholar

[10] B. Ercikdi, F. Cihangir, A. Kesimal, Deveci H, Alp I, Effect of natural pozzolans as mineral admixture on the performance of cemented-paste backfill of sulphide-rich tailings, Waste. Manage. Res, 28(2010)430-435.

DOI: 10.1177/0734242x09351905

Google Scholar

[11] H.B. Hou, F.W. Zhang, N. Wei, H.L. Li, Experimental Study on solidifying tailings by HAS stabilizer in paste backfill, J. Wuhan. Univ. Technol, 31(2009)7-10.

Google Scholar

[12] X.M. Wang, B. Zhao, Q.L. Zhang, Cemented backfill technology based on phosphorous gypsum, J. Central. South. Univ. Technol. 16(2009)285-291.

DOI: 10.1007/s11771-009-0049-8

Google Scholar

[13] X.M. Wang, B. Zhao, C.S. Zhang, Q.L. Zhang, Paste-like self-flowing transportation backfilling technology based on coal gangue, Min. Sci. Technol. 19(2009)137-143.

DOI: 10.1016/s1674-5264(09)60026-0

Google Scholar

[14] L.P. Zhu, W. Ni, D. Huang, M. Hui, S.J. GAO, Whole-tailings backfilling materials with fly ash, J. Univ. Sci. Technol. Beijing. 33(2011)1190-1196.

Google Scholar

[15] L.P. Zhu, W. Ni, X.F. Zhang, X.Y. Huang, Performance and microstructure of cemented whole-tailings backfilling materials based on red mud, slag and cement, J. Univ. Sci. Technol. Beijing. 32(2010)838-842.

Google Scholar

[16] X.J. Lu, S. Zhang, S.G. Hu, Experiment on preparation of a new type of blast furnace slag based filling cementing material, Concrete. 244 (2010)90-93, 116.

Google Scholar

[17] E. Yilmaz, T. Belem, M. Benzaazoua, A. Kesimal, B. Ercikdi, F. Cihangir, Use of high-density paste backfill for safe disposal of copper/zinc mine tailings, Gospod. Surowcami. Min. 27(2011) 81-94.

DOI: 10.1007/978-3-319-39682-8_2

Google Scholar

[18] M.D.A. Thomas , F.A. Innis, Effect of slag on expansion due to alkali-aggregate reaction in con- crete, ACI. Mater.J. 95 (1998)716-724.

Google Scholar

[19] X.F. Tian, D.J. Zhang, H.B. Hou, Z.B. Yang, H. Liu, Microstructure of weak soil stabilization slag cementing material,J. Chin. Ceramic. Soc. 34 (2006)636-640.

Google Scholar

[20] V.A. Tuan J.L. Falconer R.D. Noble, Isomorphous substitution of Al, Fe, B, and Ge into MFI-zeolite membranes, Micropor. Mesopor. Mat, 41(2000)269-280.

DOI: 10.1016/s1387-1811(00)00299-7

Google Scholar

[21] Y.G. Ench , N.P. Kogan O.P. Mchedlov-Petrosyan, Isomorphic cation substitutions in slag minerals and changing waste slag properties. Tsement, (1986)14-17.

Google Scholar