[1]
C. Ryu, K. Finney, V. N. Sharifi, J. Swithenbank, Palletized fuel production from coal tailings and spent mushroom compost – Part I Identification of pelletisation parameters. Fuel Process. Technol. 89 (2008) 269–275.
DOI: 10.1016/j.fuproc.2007.11.035
Google Scholar
[2]
C.N. Hamelinck, A.P.C. Faaij, H.D. Uil, et al, Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential, Energy. 29 (2004) 1743–1771.
DOI: 10.1016/j.energy.2004.01.002
Google Scholar
[3]
M. Sami, K. Annamalai, M. Wooldridge, Co-firing of coal and biomass fuel blends, Prog. Energy Combust Sci. 27 (2001) 171–214.
DOI: 10.1016/s0360-1285(00)00020-4
Google Scholar
[4]
D.K. Park, S.D. Kim, S.H. Le, et al, Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor, Bioresour. Technol. 101 (2010) 6151–6156.
DOI: 10.1016/j.biortech.2010.02.087
Google Scholar
[5]
E. Kastanaki, D. Vamvuka, P. Grammelis, et al, Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization, Fuel Process. Technol. 77–78 (2002) 159–166.
DOI: 10.1016/s0378-3820(02)00049-8
Google Scholar
[6]
C. Meesri, B. Moghtaderi, Lack of synergistic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes, Biomass Bioenergy. 23 (2002) 55–66.
DOI: 10.1016/s0961-9534(02)00034-x
Google Scholar
[7]
W.H. Chen, J.S. Wu, An evaluation on rice husks and pulverized coal blends using a drop tube furnace and a thermogravimetric analyzer for application to a blast furnace, Energy. 34 (2009) 1458–1466.
DOI: 10.1016/j.energy.2009.06.033
Google Scholar
[8]
B. Moghtaderi, C. Meesri, T.F. Wall, Pyrolytic characteristics of blended coal andwoody biomass, Fuel. 83 (2004) 745–50.
DOI: 10.1016/j.fuel.2003.05.003
Google Scholar
[9]
H. Haykiri-Acma, S. Yaman, Interaction between biomass and different rank coals during co-pyrolysis, Renewable Energy. 35 (2010) 288–292.
DOI: 10.1016/j.renene.2009.08.001
Google Scholar
[10]
K.M. Lu, W.J. Lee, W.H. Chen, et al, Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends, Appl. Energy. 105 (2013) 57–65.
DOI: 10.1016/j.apenergy.2012.12.050
Google Scholar
[11]
H.B. Vuthaluru, Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis, Bioresource Technol. 92 (2004) 187–195.
DOI: 10.1016/j.biortech.2003.08.008
Google Scholar
[12]
B. Moghtaderi, C. Meesri, T.F. Wall. Pyrolytic characteristics of blended coal and woody biomass, J. Fuel. 83 (2004) 745–750.
DOI: 10.1016/j.fuel.2003.05.003
Google Scholar
[13]
H. Haykiri-Acma, S. Yaman. Interaction between biomass and different rank coals during co-pyrolysis, Renewable Energy. 35 (2010) 288–292.
DOI: 10.1016/j.renene.2009.08.001
Google Scholar
[14]
E. Kastanaki, D. Vamvuka, P. Grammelis, et al, Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization, Fuel Process Technol. 77–78 (2002) 159–166.
DOI: 10.1016/s0378-3820(02)00049-8
Google Scholar
[15]
T. Sonobe, N. Worasuwannarak, S. Pipatmanomai, Synergies in co-pyrolysis of Thai lignite and corncob, Fuel Process Technol. 89 (2008) 1371–1378.
DOI: 10.1016/j.fuproc.2008.06.006
Google Scholar
[16]
T.W. Nathan, C.M. Nichola, D.M. Bryan, Product distributions from isothermal co-pyrolysis of coal and biomass, Fuel. 94 (2012) 563–570.
DOI: 10.1016/j.fuel.2011.10.046
Google Scholar
[17]
S.V. Vassilev, D. baxter, L.K. Andersen, et al, An overview of the chemical composition of biomass, Fuel. 89 (2010) 913–933.
DOI: 10.1016/j.fuel.2009.10.022
Google Scholar
[18]
R. Xu, L. Ferrante, C. Briens, et al, Flash pyrolysis of grape residues intobiofuel in a bubbling fluid bed, J. Anal. Appl. Pyrolysis. 86 (2009) 58–65.
DOI: 10.1016/j.jaap.2009.04.005
Google Scholar
[19]
H. Zhang, R. Xiao, H. Huang, et al, Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor, Bioresour. Technol. 100 (2009) 1428–1434.
DOI: 10.1016/j.biortech.2008.08.031
Google Scholar
[20]
J. Yanik, C. Kornmayer, M. Saglam, et al, Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products, Fuel Process Technol. 88 (2007) 942–947.
DOI: 10.1016/j.fuproc.2007.05.002
Google Scholar
[21]
T. Hosoya, H. Kawamoto, S. Saka, Pyrolysis gasification reactivities of primary tar and char fractions from cellulose and lignin as studied with a closed ampoule reactor, J. Anal. Appl. Pyrol. 83 (2008) 71–77.
DOI: 10.1016/j.jaap.2008.06.002
Google Scholar
[22]
N. Worasuwannarak, T. Sonobe, W. Tanthapanichakoon, Pyrolysis behaviours of rice straw, rice husk, and corncob by TG–MS technique, J. Anal. Appl. Pyrol. 78 (2007) 265–271.
DOI: 10.1016/j.jaap.2006.08.002
Google Scholar
[23]
R.K. Harma, J.B. Wooten, V.L. Baliga, et al, Fuel. 83 (2004) 1469–1482.
Google Scholar
[24]
I. Suelves, M.J. Lázaro, R. Moliner, J. Anal. Appl. Pyrolysis. 65 (2002) 197–206.
Google Scholar
[25]
C.A. Ulloa, A.L. Gordon, X.A. Garcia, Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiate pine sawdust, Fuel Process Technol. 90 (2009) 583-590.
DOI: 10.1016/j.fuproc.2008.12.015
Google Scholar