[1]
K. Sun, B. Gao, Z.Y. Zhang, G.X. Zhang, Y. Zhao, B.S. Xing, Sorption of atrazine and phenanthrene by organic matter fractions in soil and sediment, J. Environmental Pollution. 158 (2010) 3520-3526.
DOI: 10.1016/j.envpol.2010.08.022
Google Scholar
[2]
T.B. Hayes, V. Khoury, A. Narayan, M. Nazir, A. Park, T. Brown, L. Adame, E. Chan, D. Buchholz, T. Stueve, S. Gallipeau, Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis), J. Proc Natl Acad Sci USA. 107(2010).
DOI: 10.1073/pnas.0909519107
Google Scholar
[3]
F. Chen, G.G. Ying, L.X. Kong, L. Wang, J.L. Zhao, L.J. Zhou, L.J. Zhang, Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China, J. Environmental Pollution. 159 (2011).
DOI: 10.1016/j.envpol.2011.03.016
Google Scholar
[4]
J.L. Liu, R.M. Wang, B. Huang, C. Lin, Y. Wang, X.J. Pan, Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China, J. Environmental Pollution. 159 (2011) 2815-2822.
DOI: 10.1016/j.envpol.2011.05.013
Google Scholar
[5]
J. Gong, Y. Ran, D.Y. Chen, Y. Yang, Occurrence of endocrine-disrupting chemicals in riverine sediments from the Pearl River Delta, China, J. Marine Pollution Bulletin. 63 (2011) 556–563.
DOI: 10.1016/j.marpolbul.2011.01.026
Google Scholar
[6]
I. Casa-Resino, A. Valdehita, F. Soler, J.M. Navas, M. Pérez-López, Endocrine disruption caused by oral administration of atrazine in European quail (Coturnix coturnix coturnix ), J. Comparative Biochemistry and Physiology. 156 (2012) 159– 165.
DOI: 10.1016/j.cbpc.2012.07.006
Google Scholar
[7]
T.S. Jamil, T.A. Gad-Allah, H.S. Ibrahim, T.S. Saleh, Adsorption and isothermal models of atrazine by zeolite prepared from Egyptian kaolin, J. Solid State Sciences. 13 (2011) 198-203.
DOI: 10.1016/j.solidstatesciences.2010.11.014
Google Scholar
[8]
I.D. Kovaios, C.A. Paraskeva, P.G. Koutsoukos, Adsorption of atrazine from aqueous electrolyte solutions on humic acid and silica, J. Journal of Colloid and Interface Science. 356 (2011) 277-285.
DOI: 10.1016/j.jcis.2011.01.002
Google Scholar
[9]
C.A. Guzman-Perez, J. Soltan, J. Robertson, Kinetics of catalytic ozonation of atrazine in the presence of activated carbon, J. Separation and Purification Technology. 79 (2011) 8–14.
DOI: 10.1016/j.seppur.2011.02.035
Google Scholar
[10]
S. Salvestrini, P. Sagliano, P. Iovino, S. Capasso, C. Colella, Atrazine adsorption by acid-activated zeolite-rich tuffs, J. Applied Clay Science. 49 (2010) 330–335.
DOI: 10.1016/j.clay.2010.04.008
Google Scholar
[11]
G.N. Kasozi, P. Nkedi-Kizza, Y. Li, A.R. Zimmerman, Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin, J. Environmental Pollution. 169 (2012) 12-19.
DOI: 10.1016/j.envpol.2012.05.002
Google Scholar
[12]
B.Y. Shi, X.Y. Zhuang, X.M. Yan, J. J Lu, H.X. Tang, Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes, J. Journal of Environmental Sciences. 22(2010) 1195-1202.
DOI: 10.1016/s1001-0742(09)60238-2
Google Scholar
[13]
S.K. Nag, R. Kookana, L. Smith, E. Krull, L.M. Macdonald, G. Gill, Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action, J. Chemosphere. 84 (2011) 1572-1577.
DOI: 10.1016/j.chemosphere.2011.05.052
Google Scholar
[14]
J. Lehmann, Bio-energy in the black, J. Front Ecol Environ 5(2007)381-387.
Google Scholar
[15]
R.S. Kookana, A.K. Sarmah, L.V. Zwieten, E. Krull, B. Singh, Biochar application to soil: agronomic and environmental benefits and unintended consequences. J. Adv. Agron. 112 (2011)104-144.
DOI: 10.1016/b978-0-12-385538-1.00003-2
Google Scholar
[16]
A.C. Mesa, K. Spokas, Impacts of biochar (black carbon) additions on the sorption and efficacy of herbicides. In: Andreas Kortenkamp (Ed. ), Herbicides and Environment. J. InTech. (2011)315-340.
DOI: 10.5772/13620
Google Scholar
[17]
W. Zheng, M.X. Guo, T. Chow, D.N. Bennett, Nandakishore Rajagopalan, Sorption properties of greenwaste biochar for two triazine pesticides, J. Journal of Hazardous Materials. 181 (2010) 121-126.
DOI: 10.1016/j.jhazmat.2010.04.103
Google Scholar
[18]
K.A. Spokas, W.C. Koskinen, J.M. Baker, D.C. Reicosky, Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil, J. Chemosphere. 77 (2009) 574-581.
DOI: 10.1016/j.chemosphere.2009.06.053
Google Scholar
[19]
Institute of Soil Science, Chinese Academy of Science. (1978) Soil physical and chemical analyses. Shanghai, China.
Google Scholar
[20]
P. Zhang, H.W. Sun, L. Yu, T.H. Sun, Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars, J. Journal of Hazardous Materials. 244-245 (2013) 217-224.
DOI: 10.1016/j.jhazmat.2012.11.046
Google Scholar
[21]
J.A. Baldock, R.J. Smernik, Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood, J. Org. Geochem. 33(2002)1093-1109.
DOI: 10.1016/s0146-6380(02)00062-1
Google Scholar
[22]
B.L. Chen, E.J. Johnson, B. Chefetz, Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: the role of polarity and accessibility, J. Environ. Sci. Technol. 39 (2005) 6138-6146.
DOI: 10.1021/es050622q
Google Scholar
[23]
Y. Yang, L. Shu, X.L. Wang, B.S. Xing, S. Tao, Impact of deashing humic acid and humin on organic matter structural properties and sorption mechanisms of phenanthrene, J. Environ. Sci. Technol. 45 (2011) 3996-4002.
DOI: 10.1021/es2003149
Google Scholar
[24]
L.L. Ji, Y.Q. Wan, S.R. Zheng, D.Q. Zhu, Adsorption of tetracycline and sul-famethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption, J. Environ. Sci. Technol. 45(2011)5580-5586.
DOI: 10.1021/es200483b
Google Scholar
[25]
G.M. Xu, Z. Shi, J. Deng, Characterization of iron oxide coated sand and its adsorption properties in antimony removal, J. Acta Scientiae Circumstantiate. 26(2006) 607-612.
Google Scholar
[26]
S.H. Yao, J.Y. Feng, G.Q. W, Z.L. Z.L. Shi, Removal of As(V) from Drinking Water by Activated Carbon Loaded with Fe(III) Adsorbent, J. The Chinese Journal of Process Engineering. 9(2009)250-256.
Google Scholar