[1]
J.A. Melero, J. Iglesias, A. Garcia, Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges, Energ. Environ. Sci. 5 (2012) 7393-7420.
DOI: 10.1039/c2ee21231e
Google Scholar
[2]
A. Demirbas, Combustion characteristics of different biomass fuels, Prog. Energ. Combust. Sci. 30 (2004) 219–230.
Google Scholar
[3]
A. Demirbas, Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energ. Combust. Sci. 31 (2005) 171-192.
DOI: 10.1016/j.pecs.2005.02.002
Google Scholar
[4]
C.K.W. Ndiema, P.N. Manga, C.R. Ruttoh, Influence of die pressure on relaxation characteristics of briquetted biomass, Energ. Convers. Manage. 43 (2002) 2157-2161.
DOI: 10.1016/s0196-8904(01)00165-0
Google Scholar
[5]
M.T. Reza, J.G. Lynam, V.R. Vasquez, C.J. Coronella, Pelletization of biochar from hydrothermally carbonized wood, Environ. Prog. Sustain. 31 (2012) 225-234.
DOI: 10.1002/ep.11615
Google Scholar
[6]
J.S. Tumuluru, C.T. Wright, J.R. Hess, K.L. Kenney, Erratum: A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application, Biofuel. Bioprod. Bior. 5 (2011) 683-707.
DOI: 10.1002/bbb.324
Google Scholar
[7]
S. Yaman, M. Şahan, H. Haykiri-açma, K. Şeşen, S. Küçükbayrak, Production of fuel briquettes from olive refuse and paper mill waste, Fuel Process Technol. 68 (2000) 23–31.
DOI: 10.1016/s0378-3820(00)00111-9
Google Scholar
[8]
Y.D. Li, H. Liu, High-pressure densification of wood residues to form an upgraded fuel, Biomass Bioenerg. 19 (2000) 177-186.
DOI: 10.1016/s0961-9534(00)00026-x
Google Scholar
[9]
Y.D. Li, H. Liu, O. Zhang, High-pressure compaction of municipal solid waste to form densified fuel, Fuel Process Technol. 74 (2001) 81–91.
DOI: 10.1016/s0378-3820(01)00218-1
Google Scholar
[10]
N. Kaliyan, R.V. Morey, Factors affecting strength and durability of densified biomass products, Biomass Bioenerg. 33 (2009) 337-359.
DOI: 10.1016/j.biombioe.2008.08.005
Google Scholar
[11]
C.S. Chou, S.H. Lin, C.C. Peng, W.C. Lu, The optimum conditions for preparing solid fuel briquette of rice straw by a piston-mold process using the Taguchi method, Fuel Process Technol. 90 (2009) 1041–1046.
DOI: 10.1016/j.fuproc.2009.04.007
Google Scholar
[12]
H. Li, X.H. Liu, R. Legros, X.T. Bi, C.J. Lim, S. Sokhansanj, Pelletization of torrefied sawdust and properties of torrefied pellets, Appl. Energ. 93 (2012) 680-685.
DOI: 10.1016/j.apenergy.2012.01.002
Google Scholar
[13]
L.J. Kong, S.H. Tian, C. He, C.M. Du, Y.T. Tu, Y. Xiong, Effect of waste wrapping paper fiber as a solid bridge, on physical characteristics of biomass pellets made from sawdust, Appl. Energ. 98 (2012) 33-39.
DOI: 10.1016/j.apenergy.2012.02.068
Google Scholar
[14]
A. Malik, Environmental challenge vis a vis opportunity: The case of water hyacinth, Environ. Int. 33(1) (2007) 122−138.
DOI: 10.1016/j.envint.2006.08.004
Google Scholar
[15]
J.E. Santibañez-Aguilar, J.M. Ponce-Ortega, J.B. González-Campos, M. Serna-González, M.M. El-Halwagi, Synthesis of Distributed Biorefining Networks for the Value-Added Processing of Water Hyacinth, Sustainable Chem. Eng. 1 (2013) 284−305.
DOI: 10.1021/sc300137a
Google Scholar
[16]
P.P. Phothisantikul, R. Tuanpusa, M. Nakashima, T. Charinpanitkul, Y. Matsumura, Effect of CH3COOH and K2CO3 on Hydrothermal Pretreatment of Water Hyacinth (Eichhornia crassipes), Ind. Eng. Chem. Res. 52 (2013) 5009−5015.
DOI: 10.1021/ie302434w
Google Scholar
[17]
J. Gao, L. Chen, Z.C. Yan, L. Wang, Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes), Bioresour. Technol. 132 (2013) 361–364.
DOI: 10.1016/j.biortech.2012.10.136
Google Scholar
[18]
J.F. Madrid, G. M. Nuesca, L.V. Abad, Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers, Radiat. Phys. Chem. 85 (2013) 182–188.
DOI: 10.1016/j.radphyschem.2012.10.006
Google Scholar
[19]
J. Cheng, B. Xie, J. Zhou, W. Song, K. Cen, Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation, Int. J. Hydrogen Energ. 35(7) (2010) 3029−3035.
DOI: 10.1016/j.ijhydene.2009.07.012
Google Scholar
[20]
C.B. Fedler, R. Duan, Biomass production for bioenergy using recycled wastewater in a natural waste treatment system, Resour. Conserv. Recycl. 55(8) (2011) 793−800.
DOI: 10.1016/j.resconrec.2011.04.001
Google Scholar
[21]
Annual book of ASTM standards: D4442-92, Direct moisture content measurement of wood and wood base materials (1997).
Google Scholar
[22]
Annual book of ASTM standards: E872-82, Volatile matter in the analysis sample of particulate wood fuels (1998).
Google Scholar
[23]
Annual book of ASTM standards: E1755-95, Ash in biomass (1998).
Google Scholar
[24]
C. Ververis, K. Georghiou, D. Danielidis, D.G. Hatzinikolaou, P. Santas, R. Santas, R.V. Corleti, Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements, Bioresour. Technol. 98 (2007).
DOI: 10.1016/j.biortech.2006.01.007
Google Scholar
[25]
O.C. Chin, K.M. Siddiqui, Characteristics of some biomass briquettes prepared under modest die pressures. Biomass Bioenerg. 18 (2000) 223-228.
DOI: 10.1016/s0961-9534(99)00084-7
Google Scholar
[26]
Annual book of ASTM Standards: D441-86, Standard test method of tumbler test for coal. West Conshohochen, PA: American Society for Testing and Materials (1998) 192-194.
Google Scholar
[27]
Annual book of ASTM Standards: D440-86, Standard test method of drop shatter test for coal, West Conshohochen PA: American Society for Testing and Materials (1998) 188-191.
Google Scholar
[28]
S.R. Richards, Physical testing of fuel briquettes, Fuel Process Technol. 25 (1990) 89-100.
Google Scholar
[29]
I. Obernbergera, G. Thek, Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behavior, Biomass Bioenerg. 27 (2004) 653–669.
DOI: 10.1016/j.biombioe.2003.07.006
Google Scholar
[30]
N. Kaliyan, R.V. Morey, Factors affecting strength and durability of densified biomass products, Biomass Bioenerg. 33 (2009) 337-359.
DOI: 10.1016/j.biombioe.2008.08.005
Google Scholar
[31]
N. Kaliyan, R.V. Morey, Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn and switchgrass, Bioresour. Technol. 101 (2010) 1082-1090.
DOI: 10.1016/j.biortech.2009.08.064
Google Scholar
[32]
S. Yaman, M. Şahan, H. Haykiri-açma, K. Şeşen, S. Küçükbayrak, Fuel briquettes from biomass–lignite blends, Fuel Process Technol. 72 (2001) 1-8.
DOI: 10.1016/s0378-3820(01)00170-9
Google Scholar
[33]
K. Jardeby, U. Germgård, B. Kreutz, T. Heinze, U. Heinze, H. Lennholm, Effect of pulp composition on the characteristics of residuals in CMC made from such pulps, Cellulose 12 (2005) 385-393.
DOI: 10.1007/s10570-005-2202-3
Google Scholar
[34]
A. Demirbas, Physical properties of briquettes from waste paper and wheat straw mixtures, Energ. Convers Manage. 40 (1999) 437-445.
DOI: 10.1016/s0196-8904(98)00111-3
Google Scholar