[1]
Y. Zhu, D.Y. Wang, A.G. Gong, L.J. Zhou, Z.X. Zhang, X.Y. Liu, Overview of food residue treatment methods (in Chinese), Environ. Sanitation Eng. 19 (2011) 50-52.
Google Scholar
[2]
Q.F. Zhang, L.H. Yang, D.D. Zhou, Overview on food waste treatment technology(in Chinese), China biogas, 30 (2012) 22-27.
Google Scholar
[3]
Y.J. Ge, J.Y. Ma, X.D. Ruan, Food waste utilization and comparison of processing technology (in Chinese), Urban manage. Tech. 6 (2012) 61-63.
Google Scholar
[4]
S.K. Han, H.S. Shin, Performance of an innovative two-stage process converting food waste to hydrogen and methane, J. Air & Waste Manage. Assoc. 54 (2004) 242-249.
DOI: 10.1080/10473289.2004.10470895
Google Scholar
[5]
Y.Y. Yuan, X.Y. Cao, D.J. Niu, Y.C. Zhao, Discussion on characteristics and treatment technologies of food residue (in Chinese), Environ. Sanitation Eng. 14 (2006) 46-49.
Google Scholar
[6]
J.C. Jansen, H. Spliid, T.L. Hansen, T.H. Christensen, Assessment of sampling and chemical analysis of source-separated organic household waste, Waste Manage. 24 (2004) 541-549.
DOI: 10.1016/j.wasman.2004.02.013
Google Scholar
[7]
J. Angulo, L. Mahecha, S.A. Yepes, A.M. Yepes, G. Bustamante, Quantitative and nutritional characterization of fruit and vegetable waste from marketplace: A potential use as bovine feedstuff, J. Environ. Manage. 95 (2012) 5203-5209.
DOI: 10.1016/j.jenvman.2010.09.022
Google Scholar
[8]
A.I. Vavouraki, E.M. Angelis, M. Kornaros, Optimization of thermo-chemical hydrolysis of kitchen wastes, Waste Manage. 33 (2013) 740-745.
DOI: 10.1016/j.wasman.2012.07.012
Google Scholar
[9]
B.F. Staley, M.A. Barlaz, Composition of Municipal Solid Waste in the United States and Implications for Carbon Sequestration and Methane Yield, J. Environ. Eng. 135 (2009) 901-909.
DOI: 10.1061/(asce)ee.1943-7870.0000032
Google Scholar
[10]
R.H. Zhang, H.M. El-Mashad, K. Hartman, F.Y. Wang, G.Q. Liu, Characterization of food waste as feedstock for anaerobic digestion, Bioresour. Technol. 98 (2007) 929-935.
DOI: 10.1016/j.biortech.2006.02.039
Google Scholar
[11]
R.P. Li, Y.J. Ge, K.S. Wang, X.J. Li, Y.Z. Pang, Characteristics and anaerobic digestion performances of kitchen wastes (in Chinese), Renewable Energy Resource, 28 (2010) 76-80.
Google Scholar
[12]
M.M. Alves, M.A. Pereira, D.Z. Sousa, Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA), Microb. Biotechnol. 5 (2009) 538-550.
DOI: 10.1111/j.1751-7915.2009.00100.x
Google Scholar
[13]
H.S. Shin, J.H. Youn, S.H. Kim, Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis, Int. J. Hydrogen Energy, 29 (2004) 1355-1363.
DOI: 10.1016/j.ijhydene.2003.09.011
Google Scholar
[14]
D.Y. Wang, A. J Gong, Z.X. Zhang, Treatment status and developmental trend of food residue in Beijing (in Chinese), Environ. Sanitation Eng. 18 (2010) 24-27.
Google Scholar
[15]
X.Y. Liu, Study on characteristics and anaerobic digestion performance of kitchen waste: dissertation for master degree, Beijing University of Chemical Technology, (2010).
Google Scholar
[16]
X. Wang, D.H. Wang, F. Xu, Effect of minerals on anaerobic digestion of food waste ( in Chinese), Acta scientiae circumstantiae, 26 (2006) 256-261.
Google Scholar
[17]
M.L. Westendorf, T. Schuler, E.W. Zirkle, Nutritional quality of recycled food plate waste in diets fed to swine, J. Anim. Sci, 15 (1999) 106-111.
DOI: 10.15232/s1080-7446(15)31737-x
Google Scholar
[18]
H.M. El-Mashad, R.H. Zhang, Biogas production from co-digestion of dairy manure and food waste, Bioresour. Technol. 101 (2010) 4021-4028.
DOI: 10.1016/j.biortech.2010.01.027
Google Scholar
[19]
A.J. Garcia, M.B. Esteban, M.C. Marquez, P. Ramos, Biodegradable municipal solid waste: Characterization and potential use as animal feedstuffs, Waste Manage. 25 (2005) 780-787.
DOI: 10.1016/j.wasman.2005.01.006
Google Scholar
[20]
A. Veeken, B. Hamelers, Sources of Cd, Cu, Pb, and Zn in biowaste, Sci. Total Environ. 300 (2002) 87-98.
DOI: 10.1016/s0048-9697(01)01103-2
Google Scholar