[1]
G.B. Pu, S.J. Wang, K.W. Sun. Enhancive Study of Methanogenesis with Fermentative Biohydrogen Production Residue for Food Residues by Inoculation Volume, Acta Scientiarum Naturalium Universitatis Sunyatseni, 48(2009)87-92. (in Chinese).
Google Scholar
[2]
G. Chittibabu, K. Nath, D. Das. Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21, Proc. Biochem, 41(2006)682-688.
DOI: 10.1016/j.procbio.2005.08.020
Google Scholar
[3]
J.L. Wang, W. Wan. Factors influencing fermentative hydrogen production: a review, Int. J. Hydrogen Energy, 34 (2009)799- 811.
DOI: 10.1016/j.ijhydene.2008.11.015
Google Scholar
[4]
X. Wang, D. Hoefei, C. P. Saint. The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge, J. Journal of Appl. Microbial. 103(2007)1415-1423.
DOI: 10.1111/j.1365-2672.2007.03370.x
Google Scholar
[5]
C.F. Chu, K.Q. Xu. Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. Int. J. Hydrogen Energy, 37(2012)10611-10618.
DOI: 10.1016/j.ijhydene.2012.04.048
Google Scholar
[6]
D.M. Chen. Experimental Methane Production From Hydrogen-Fermentation Residue [J]. Environmental Engineering, 48(2009)403-405. (in Chinese).
Google Scholar
[7]
S.H. Kim, S.K. Han, H.S. Shin. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int. J. Hydrogen Energy, 29(2004)1607-1616.
DOI: 10.1016/j.ijhydene.2004.02.018
Google Scholar
[8]
M.B. Salerno, W. Park, Y. Zuo, B.E. Logan. Inhibition of biohydrogen production by ammonia. Water Res., 40(2006)1167-1172.
DOI: 10.1016/j.watres.2006.01.024
Google Scholar
[9]
C. Cavinato, A. Giuliano, D. Bolzonella. Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience. Int. J. Hydrogen Energy, 37(2012)11549-11555.
DOI: 10.1016/j.ijhydene.2012.03.065
Google Scholar
[10]
E. Elsayed, N. George, H. Hisham. Biochemical methane potential (BMP) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source. Bioresour. Technol., 110(2012)18-25.
DOI: 10.1016/j.biortech.2012.01.025
Google Scholar
[11]
C.F. Chu, K.Q. Xu. Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. Int. J. Hydrogen Energy, 37(2012)10611-10618.
DOI: 10.1016/j.ijhydene.2012.04.048
Google Scholar
[12]
D.H. Kim, M.S. Kim. Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresour. Technol., 127(2013) 267-274.
DOI: 10.1016/j.biortech.2012.09.088
Google Scholar
[13]
J. David, G. R. Michael, T. D. Glen. Manual on the Causes and Content of Activated Sludge Bulking and Foaming. 2nd Edition. Boca Raton, Lewis publishers, Florida, USA, 26(1993).
Google Scholar
[14]
J.H. Lin, W.L. Wei, X. X. Peng. Modern Biology Experiment, High Education Press, Beijing, 2001, pp.2-37. (in Chinese).
Google Scholar
[15]
H. Zhao. Research On the Effect of Inoculated Amount for Biogas Producing Volume. Journal of Anhui Agricultural Sciences, 37(2009)6278-6280. (in Chinese).
Google Scholar
[16]
C.J. Ma. Studies on Ox manuer by Anaerobic Fermentation. Anhui Agricultural University degree thesis, 2009. (in Chinese).
Google Scholar