[1]
B. Xi, X.L. Guo, H. Wang, J.X. Duan, Excess sludge reduction using pilot-scale lysis-cryptic growth system integrated ultrasonic/alkaline disintegration and hydrolysis/acidogenesis pretreatment, Bioresour. Technol. 116(2012) 441-447.
DOI: 10.1016/j.biortech.2012.03.091
Google Scholar
[2]
Y.Y. Yan, H.L. Chen, W.Y. Xu, Q.B. He, Q. Zhou, Enhancement of biochemical methane potential from excess sludge with low organic content by mild thermal pretreatment, Biochem. Eng. J. 70(2013) 127-134.
DOI: 10.1016/j.bej.2012.10.011
Google Scholar
[3]
G.H. Wang, J. Sui, H.S. Shen, S.K. Liang, X.M. He, M. J Zhang, Y. Z Xie, L.Y. Li, Y.Y. Hu, Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation, J. Hazard. Mater. 192(2011) 93-98.
DOI: 10.1016/j.jhazmat.2011.04.099
Google Scholar
[4]
A.R. Mohammadi, N. Mehrdadi, G.N. Bidhendi, A. Torabian, Excess sludge reduction using ultrasonic waves in biological wastewater treatment, Desalination. 275(2011) 67-73.
DOI: 10.1016/j.desal.2011.02.030
Google Scholar
[5]
R. Tan, K. Miyanaga, D. Uy, Y. Tanji, Effect of heat-alkaline treatment as a pretreatment method on volatile fatty acid production and protein degradation in excess sludge, pure proteins and pure cultures, Bioresour. Technol. 118(2012) 390-398.
DOI: 10.1016/j.biortech.2012.05.064
Google Scholar
[6]
G.H. Zhuo, Y.Y. Yan, X.J. Tan, X.H. Dai, Q. Zhou, Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: Effect of temperature, J. Biotechnol. 159(2012) 27-31.
DOI: 10.1016/j.jbiotec.2012.01.005
Google Scholar
[7]
X. Yang, M. Du, D.J. Lee, C. Wan, L. Zheng, G.Y. Li, J.S. Chang, Enhanced production of volatile fatty acids (VFAs) from sewage sludge by β-cyclodextrin, Bioresour. Technol. 110(2012) 688-691.
DOI: 10.1016/j.biortech.2011.08.122
Google Scholar
[8]
Z.Y. J, G.L. Chen, Y. G Chen, Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation, Bioresour. Technol. 101(2010) 3457-3462.
DOI: 10.1016/j.biortech.2009.12.117
Google Scholar
[9]
H.L. X, J.L. Chen, H. Wang, H.C. Shi, Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids, Bioresour. Technol. 119(2012) 285-292.
DOI: 10.1016/j.biortech.2012.05.126
Google Scholar
[10]
H. Chen, H.Y. Wu, Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology, Bioresour. Technol. 101(2010) 5487-5493.
DOI: 10.1016/j.biortech.2010.02.013
Google Scholar
[11]
L.Y. Feng, H. Wang, Y.G. Chen, Q. Wang, Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors, Bioresour. Technol. 100(2009).
DOI: 10.1016/j.biortech.2008.05.028
Google Scholar
[12]
P. Zhang, Y.G. Chen, Q. Zhou, Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH, Water Res. 43(2009) 3735-3742.
DOI: 10.1016/j.watres.2009.05.036
Google Scholar
[13]
H.M. Lo, C.F. Chiang, H.C. Tsao, T.Y. Pai, M.H. Liu, T.A. Kurniawan, K.P. Chao, C.T. Liou, K.C. Lin, C.Y. Chang, S.C. Wang, C.J. Banks, C.Y. Lin, W.F. Liu, P.H. Chen, C.K. Chen, H.Y. Chiu, H.Y. Wu, T.W. Chao, Y.R. Chen, D.W. Liou, F.C. Lo, Effects of spiked metals on the MSW anaerobic digestion, Waste Manage. Res. 30(2012).
DOI: 10.1177/0734242x10383079
Google Scholar
[14]
J.B. Glass, V.J. Orphan, Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide, Microbiol. 61(2012) 1-19.
DOI: 10.3389/fmicb.2012.00061
Google Scholar
[15]
B. Demirel, P. Scherer, Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane, Biomass Bioenergy, 35(2011) 992-998.
DOI: 10.1016/j.biombioe.2010.12.022
Google Scholar
[16]
M. Takashima, K. Shimada, R.E. Speece. Minimum requirements for trace metals (Iron, Nickel, Cobalt, and Zinc) in thermophilic and mesophilic methane fermentation from glucose. Water Environ. Res. 83(2011) 339-346.
DOI: 10.2175/106143010x12780288628895
Google Scholar
[17]
H Qiang, D Lang, Y Li, High-solid mesophilic methane fermentation of food waste with an emphasis on Iron, Cobalt, and Nickel requirements, Bioresour. Technol. 103(2012) 21-27.
DOI: 10.1016/j.biortech.2011.09.036
Google Scholar
[18]
M.H. Zandvoort, E.D. Hullebusch, F.G. Fermoso, Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies, Engin. Life Sci. 6(2006) 293-301.
DOI: 10.1002/elsc.200620129
Google Scholar
[19]
F.G. Fermoso, J. Bartacek, S. Jansen, Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application, Sci. Total Environ. 407(2009) 3652-3667.
DOI: 10.1016/j.scitotenv.2008.10.043
Google Scholar
[20]
X.L. Liu, H. Liu, J.H. Chen, J. Chen, Enhancement of solubilization and acidification of waste activated sludge by pretreatment, Waste Manage. 28(2008) 2614-2622.
DOI: 10.1016/j.wasman.2008.02.001
Google Scholar