[1]
Information on http: /news. solidwaste. com. cn/view/id_35631.
Google Scholar
[2]
N. Abe, Y.Q. Tan, M. Iwamura, H. Ohta, S. Morimura, K. Kida, Development of an efficient process for the treatment of residual sludge discharged from an anaerobic digester in a sewage treatment plant, Bioresour. Technol., 102(2011)7641-7644.
DOI: 10.1016/j.biortech.2011.05.030
Google Scholar
[3]
S. Pilli, P. Bhunia, S. Yan, R.J. LeBlanc, R.D. Tyagi, R.Y. Surampalli, Ultrasonic pretreatment of sludge: A review, Ultrason. Sonochem., 18(2011)1-18.
DOI: 10.1016/j.ultsonch.2010.02.014
Google Scholar
[4]
S. Ponsa´, I. Ferrer, F. Va´zquez, X. Font, Optimization of the hydrolytic–acidogenic anaerobic digestion stage (55ºC) of sewage sludge: Influence of pH and solid content, Water Res., 42(2008) 3972-3980.
DOI: 10.1016/j.watres.2008.07.002
Google Scholar
[5]
J.J. Lay, Y.Y. Li, T. Noike, Influences of pH and moisture content on the methane production in high-solid sludge digestion, Water Res., 31 (1997)1518-1524.
DOI: 10.1016/s0043-1354(96)00413-7
Google Scholar
[6]
J.L. Wang, W. Wan, Factors influencing fermentative hydrogen production: A review, Int. J. Hydrogen Energy, 34 (2009)799- 811.
DOI: 10.1016/j.ijhydene.2008.11.015
Google Scholar
[7]
S.K. Khanal, W.H. Chen, L. Li, S. Sung, Biological hydrogen production: effects of pH and intermediate products, Int. J. Hydrogen Energy, 29 (2004)1123-1131.
Google Scholar
[8]
T. Zhang, H. Liu, H.H.P. Fang, Biohydrogen production from starch in wastewater under thermophilic condition, J. Environ. Manage., 69(2003)149-156.
DOI: 10.1016/s0301-4797(03)00141-5
Google Scholar
[9]
Y.J. Lee, T. Miyahara, T. Noike, Effect of pH on microbial hydrogen fermentation, J. Chem. Technol. Biotechnol., 77(2002) 694-698.
DOI: 10.1002/jctb.623
Google Scholar
[10]
M.L. Cai, J.X. Liu, Y. S. Wei, Enhanced Biohydrogen Production from Sewage Sludge with Alkaline Pretreatment, Environ. Sci. Technol., 38(2004)3195-3202.
DOI: 10.1021/es0349204
Google Scholar
[11]
M.L. Cai, J.X. Liu, Factors of effecting hydrogen production from anaerobic fermentation of excess sewage sludge, Environmental Science, 26 (2005)98-101. (in Chinese).
Google Scholar
[12]
B.Y. Xiao, J.X. Liu, Effects of pH on biohydrogen production from sewage sludge with alkaline pretreatment, Chinese Science Bulletine, 50(2005) 2734-2738. (in Chinese).
Google Scholar
[13]
B. Y. Xiao, J. X. Liu, Influential factors of fermentative hydrogen production from thermally treated sewage sludge, The Chinese Journal of Process Engineering, 9(2009) 47-52. (in Chinese).
Google Scholar
[14]
B.Y. Xiao, J. X. Liu, Effects of 4 pretreatment on biohydrogen production from sewage sludge with alkaline pretreatment, Chinese Science Bulletine, 53(2008) 1987-1992. (in Chinese).
Google Scholar
[15]
S.Z. Wei, B.Y. Xiao, J.X. Liu, Impact of alkali and heat pretreatment on the pathway of hydrogen production from sewage sludge, Chinese Science Bulletine, 54(2009) 3291-3300. (in Chinese).
DOI: 10.1007/s11434-009-0591-7
Google Scholar
[16]
C.Q. Liu, J.S. Zhang, D.J. Niu, W.H. Chen, Y.C. Zhao, Effects of initial pH on hydrogen production from acid pretreated municipal sludge, Environmental Science, 29(2008) 2628-2632. (in Chinese).
Google Scholar
[17]
C.Q. Liu, Y.C. Zhao, J.S. Zhang, W.H. Chen, D.J. Niu, Bio-hydrogen production from acid pretreated municipal sludge, Acta Scientiae Circumstantiae, 28(2008) 2006-201l. (in Chinese).
Google Scholar
[18]
F. Wu, S.Q. Zhou, Promoting biological hydrogen product ion from excessive sludge by ultrasonic waves, Environ. Sci. Technol., 31(2008) 95-115. (in Chinese).
Google Scholar
[19]
American Public Health Association/American Water Works Association/Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 19th ed., Washington, DC, USA, (1998).
DOI: 10.1002/j.1551-8833.1932.tb18153.x
Google Scholar
[20]
J.H. Lin, W.L. Wei, X. X. Peng, Modern Biology Experiment, High Education Press, Beijing, , China, 2001, pp.2-37. (in Chinese).
Google Scholar
[21]
J. David, G. R. Michael, T. D. Glen, Manual on the Causes and Content of Activated Sludge Bulking and Foaming, 2nd ed., Boca Raton, Lewis publishers, Florida, USA, 1993, p.26.
Google Scholar
[22]
C.Y. Lin, R.C. Chang, Hydrogen production during the anerobic acidogenic conversion of glucose, J. Chem. Technol. Biotechnol., 74(1999) 498-500.
DOI: 10.1002/(sici)1097-4660(199906)74:6<498::aid-jctb67>3.0.co;2-d
Google Scholar
[23]
J.J. Lay, Modeling and optimization of anaerobic digested sludge converting starch to hydrogen, Biotechnol. Bioeng., 68(2000) 269-278.
DOI: 10.1002/(sici)1097-0290(20000505)68:3<269::aid-bit5>3.0.co;2-t
Google Scholar
[24]
C.C. Chen, Y.Y. Lin, M.C. Lin, Acid-base enrichment enhances anaerobic anaerobic hydrogen production process, Appl. Microbiol. Biotechnol., 58(2002) 224-228.
DOI: 10.1007/s002530100814
Google Scholar
[25]
C.Y. Lin, C. Y. Lee, I. C. Tseng, I.Z. Shiao, Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora, Process Biochem., 41(2006) 915-919.
DOI: 10.1016/j.procbio.2005.10.010
Google Scholar
[26]
H.H.P., Fang, H. Liu, Effect of pH on hydrogen production from glucose by a mixed culture, Bioresour. Technol., 82(2002) 87-93.
Google Scholar
[27]
T.Q. Hong, X.L. Hao, H.Q. Yu, Tentative research on effect of sodium ion concentration, Technology of Water Treatment, 5(2004) 270-272, 275. (in Chinese).
Google Scholar