[1]
Winkels, H.J. and Stein, A. Optimal cost-effective sampling for monitoring and dredging of contaminated sediments. J. Environ Qual. 26(4(1997) 933 –946.
DOI: 10.2134/jeq1997.00472425002600040003x
Google Scholar
[2]
Forstner, U. and Calmano, U. Characterisation of dredged materials. Water Science and Technology, 38 (1998) 149–157.
DOI: 10.2166/wst.1998.0457
Google Scholar
[3]
Huang, Y. H. Zhu, W. Qian, X. D. Zhang, N. Zhou, X. Z. Change of mechanical behavior between solidified and remolded solidified dredged materials. Engineering Geology, 119 (2011) 112-119.
DOI: 10.1016/j.enggeo.2011.03.005
Google Scholar
[4]
Zhu W, Zhang C L, Chiu A CF. Soil-water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 133(2007) 588-598.
DOI: 10.1061/(asce)1090-0241(2007)133:5(588)
Google Scholar
[5]
Zhu W. Huang, Y.H. Zhang, C.L. Liu, Q. S. Effect of curing time on mechanical behavior of crushed solidified dredged material. Characterization, Monitoring, and Modeling of Geosystems (GSP179), ASCE, 179 (2008)597-604.
DOI: 10.1061/40972(311)75
Google Scholar
[6]
Huang, Y.H. Dong C. Guan Y.F. Compaction Effect on Physical and Mechanical Characteristics of Solidified Dredged Material. Chinese Journal of Geotechnical Engineering, 34(2012)1728-1733.
Google Scholar
[7]
Huang, Y.H. Zhu W. ZHang, C.L. Wang, S.C. Mechanical characteristics and strength source of remolded solidified dredged materials. Rock and Soil Mechanics, 30(2009)1352-1356.
Google Scholar
[8]
Huang, Y.H. Zhu W. Zhou, X. Z. Experimental study of compressibility behavior of solidified Dredged Material. Rock and Soil Mechanics, 33(2012)2923-2928.
Google Scholar
[9]
Chiu, C. F. Zhu, W. Zhang, C. L. Yielding and shear behavior of cement-treated dredged materials. Engeenring Geology 103(2009) 1-12.
DOI: 10.1016/j.enggeo.2008.07.007
Google Scholar
[10]
Connor J.R. Chemical fixation and solidification of hazardous wastes, Van Nostrand Reinhold, New York, (1990).
Google Scholar
[11]
Dermatas, D. Dutko, P. Balorda-Barone, J. Moon, D.H. Evaluation of engineering properties of cement treated Hudson River dredged sediments for reuse as fill materials. Journal of Marine Environmental Engineering, 7 (2003) 101-123.
DOI: 10.1061/40680(2003)139
Google Scholar
[12]
Horpibulsuk, S. Miura, N. and Nagaraj, T.S. "Clay-water/cement ratio identity for cement admixed soft clays. J. Geotech. Geoenviron. Eng. 131 (2005)187-192.
DOI: 10.1061/(asce)1090-0241(2005)131:2(187)
Google Scholar
[13]
Lee, F.H. Lee, Y. Chew, S.H. and Yong, K.Y. Strength and modulus of marine clay-cement mixes. J. Geotech. Geoenviron. Eng. 131(2005)178-186.
DOI: 10.1061/(asce)1090-0241(2005)131:2(178)
Google Scholar
[14]
Nagaraj, T.S. Miura, N. Yaligar, P.P. and Yamadera, A. Predicting strength development by cement admixture based on water content. Grouting and deep mixing: Proc. IS Tokyo'96, 2nd Int. Conf. on Ground Improvement Geosystems, (1996)431-436.
Google Scholar
[15]
Tremblay, H. Leroueil, S. and Locat, J. Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement. Canadian Geotech. J. 38(2001) 567-579.
DOI: 10.1139/t00-119
Google Scholar
[16]
Ministry of Transport P.R. China. specifications for design of highway subgrades. JTG D30-2004, Beijing, (2004).
Google Scholar
[17]
Ministry of Construction P.R. China. Standard for soil test method. GB/T 50123-1999, Beijing, (1999).
Google Scholar