Recombinant Expression of Bioactive Peptides: A Review

Article Preview

Abstract:

There is a wide source of bioactive peptides and the preparation methods of it are various. It is a novel process that preparing bioactive peptides by genetic engineering. In this paper, the expression system of bioactive peptides is discussed and its research progress is introduced.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

331-334

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Agyei, M. K. Danquah, Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities, Trends Food Sci. Tech. 23 (2012) 62-69.

DOI: 10.1016/j.tifs.2011.08.010

Google Scholar

[2] A. B. Ingham, R. J. Moore, Recombinant production of antimicrobial peptides in heterologous microbial systems, Biotechnol. Appl. Biochem. 47 (2007) 1–9.

DOI: 10.1042/ba20060207

Google Scholar

[3] Y. W. Li, B. Li, J. G. He, et al., Quantitative structure–activity relationship study of antioxidative peptide by using different sets of amino acids descriptors, J. Mol Struct. 998 (2011) 53–61.

DOI: 10.1016/j.molstruc.2011.05.011

Google Scholar

[4] A. Durak, B. Baraniak, A. Jakubczyk, et al., Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds, Food Chem. 141 (2013) 2177–2183.

DOI: 10.1016/j.foodchem.2013.05.012

Google Scholar

[5] E. K. Kim, S. J. Lee, B. T. Jeon, et al., Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison proteinFood Chem. 114 (2009) 1365–1370.

DOI: 10.1016/j.foodchem.2008.11.035

Google Scholar

[6] X. X. Xu, F. L. Jin, X. Q. Yu, et al., Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli, Protein Expres. Purif. 53 (2007) 293–301.

DOI: 10.1016/j.pep.2006.12.020

Google Scholar

[7] D. M. Floss, K. Schallau, R. J. Stefan, et al., Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application, Trends Biotechnol. 28(2009) 37–45.

DOI: 10.1016/j.tibtech.2009.10.004

Google Scholar

[8] K. Yang, Y. J. Su, J. H. Li, et al., Expression and purification of the antimicrobial peptide cecropin AD by fusion with cationic elastin-like polypeptides, Protein Expres. Purif. 85 (2012) 200–203.

DOI: 10.1016/j.pep.2012.04.007

Google Scholar

[9] Z. O. Shenkarev, Pavel V. Panteleev, Sergey V. Balandin, et al., Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfishAurelia aurita, Biochem. Bioph. Res. Co. 429 (2012) 63–69.

DOI: 10.1016/j.bbrc.2012.10.092

Google Scholar

[10] H. Peng, M. Yang, W. S. Huang, et al., Soluble expression and purification of a crab antimicrobial peptide scygonadin in different expression plasmids and analysis of its antimicrobial activity, Protein Expres. Purif. 70 (2010) 109–115.

DOI: 10.1016/j.pep.2009.09.008

Google Scholar

[11] W. Cao, Y. X. Zhou, Y. S. Ma, et al., Expression and puriWcation of antimicrobial peptide adenoregulin with C-amidated terminus in Escherichia coli, Protein Expres. Purif. 40 (2005) 404–410.

DOI: 10.1016/j.pep.2004.12.007

Google Scholar

[12] B. Srinivasulu, R. Syvitski, J. K. Seo, et al., Expression, purification and structural characterization of recombinant hepcidin, an antimicrobial peptide identified in Japanese flounder, Paralichthys olivaceus, Protein Expres. Purif. 61 (2008).

DOI: 10.1016/j.pep.2008.05.012

Google Scholar

[13] H. H. Hou, W. L. Yan, K. X. Du, et al., Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms ofScolopendra subspinipes mutilansin Escherichia coli using SUMO fusion partner, Protein Expres. Purif. 92 (2013).

DOI: 10.1016/j.pep.2013.10.004

Google Scholar

[14] X. X. Xu, F. L. Jin, X. Q. Yu, et al., Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli, Protein Expres. Purif. 53 (2007) 293–301.

DOI: 10.1016/j.pep.2006.12.020

Google Scholar

[15] R. A. Aleinein, R. Hamoud, H. Schäfer, et al., Molecular cloning and expression of ranalexin, a bioactive antimicrobial peptide from Rana catesbeiana in Escherichia coli and assessments of its biological activities, Appl Microbiol Biotechnol. 97 (2013).

DOI: 10.1007/s00253-012-4441-1

Google Scholar

[16] L. Huang, H. L. Ma, Y. L. Li, et al., Antihypertensive activity of recombinant peptide IYPR expressed in Escherichia coli as inclusion bodies, Protein Expres. Purif. 83 (2012) 15–20.

DOI: 10.1016/j.pep.2012.02.004

Google Scholar

[17] D. Liu, H. Y. Sun, L. J. Zhang, etal, High-Level Expression of Milk-Derived Antihypertensive Peptide in Escherichia coli and Its Bioactivity, J. Agric. Food Chem. 55 (2007) 5109−5112.

DOI: 10.1021/jf0703248

Google Scholar

[18] F. Fan, Y. M. Wu, J. X. Liu, Expression and purification of two different antimicrobial peptides, PR-39 and Protegrin-1 in Escherichia coli, Protein Expres. Purif. 73 (2010) 147–151.

DOI: 10.1016/j.pep.2010.05.012

Google Scholar

[19] T. J. Park, J. S. Kim, S. S. Choi, et al., Cloning, expression, isotope labeling, purification, and characterization of bovine antimicrobial peptide, lactophoricin in Escherichia coli, Protein Expres. Purif. 65 (2009) 23–29.

DOI: 10.1016/j.pep.2008.12.009

Google Scholar

[20] J. Zhang, Y.L. Yang, D. Teng, et al., Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus, Protein Expres. Purif. 78 (2011) 189–196.

DOI: 10.1016/j.pep.2011.04.014

Google Scholar

[21] A. K. P. Vadhana, P. Samuel, R.M. Berin, et al., Improved secretion of Candida antarctica lipase B with its native signal peptide in Pichia pastoris, Enzyme Microb. Tech. 52 (2013) 177–183.

DOI: 10.1016/j.enzmictec.2013.01.001

Google Scholar

[22] L. Wang, C. E. Lai, Q. F. Wu, et al., Production and characterization of a novel antimicrobial peptide HKABF by Pichia pastoris, Process Biochem. 43 (2008) 1124–1131.

DOI: 10.1016/j.procbio.2008.06.009

Google Scholar