Preparation of an Amphiphilic Magnetic Copolymer Microspheres

Article Preview

Abstract:

The magnetic polymer microspheres were synthesized by copolymerization of styrene with a water-soluble polyurethane macromonomer in the presence of Fe3O4 in ethanol/water medium. The structure of copolymer was determined by FTIR spectroscopy. The morphology and the average size of magnetic microspheres were characterized by transmission electron microscopy. The magnetic properties were recorded with a vibrating sample magnetometer. The results show that the magnetic microspheres had an average particle size of 500nm. The magnetic microspheres have super paramagnetic, enhanced hydrophilicity and the characteristics of simple and rapid magnetic separation. The magnetic susceptibility was 3.898×10-5emu/(Oe·g) and the saturation magnetization was 41.122 emu/g.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 881-883)

Pages:

846-849

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.A. Dresco V.S. Zaitsev R.J. Gambino. Langmuir Vol. 15(1999), p. (1945).

Google Scholar

[2] K. Wormuth. J. Colloid Interface Sci. Vol. 241(2001), p.366.

Google Scholar

[3] X.Y. Liu, Z.H. Zheng, X.P. Long. Acta Polym. Sin. (in Chinese) Vol. 1( 2003), p.104.

Google Scholar

[4] L.C. Santa Maria, M.A.S. Costa, F.A.M. Santos, S.H. Wang, M.R. Silva. Mater. Lett. Vol. 60(2006), p.270.

Google Scholar

[5] N. Guo,D. Wu,X. Pan,M. Lu.J. Appl. Polym. Sci. Vol. 112(2009), p.2383.

Google Scholar

[6] X. Cai,Y. Zhang,G. Wu.J. Appl. Polym. Sci. Vol. 122(2011), p.2271.

Google Scholar

[7] D. Tanyolac A.R. Őzdural. J. Appl. Polym. Sci. Vol. 80(2001), p.707.

Google Scholar

[8] G. Fonnum, C. Johansson, A. Molteberg, S. Morup, E. Aksnes. J. Magn. Magn. Mater. Vol. 293(2005), p.41.

Google Scholar

[9] L. Cumbal, J. Greenleaf, D. Leun, A.K. SenGupta. React. Funct. Polym. Vol. 54(2003), p.167.

Google Scholar

[10] J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T.N. Nilsenet, P.C. Mork, P. Stenstad, E. Hormes, O. Olsvik. Prog. Polym. Sci. Vol. 17(1992), p.87.

Google Scholar

[11] T.M. Cocker C.J. Fee R.A. Evans. Biotechnol. Bioeng. Vol. 53(1997), p.79.

Google Scholar

[12] P.H. Wang C.Y. Pan. Eur. Polym.J. Vol. 36(2000), p.2297.

Google Scholar

[13] D. Hurak. J. Polym. Sci. Part A: Polym. Chem. Vol. 39(2001), p.3707.

Google Scholar

[14] G. Xie Q.Y. Zhang Z.P. Luo,M. Wu,J.P. Zhang. Acta Polym. Sin. (in Chinese) Vol. 3(2002), p.314.

Google Scholar

[15] Z.Q. Fang, Q.B. Dong, C.H. Liu, Z.M. Li. Chin.J. Appl. Chem. (in Chinese) Vol. 20(2003), p.814.

Google Scholar

[16] M. Niu, M.H. Du, Z.Y. Gao, C.H. Yang, X.Y. Lu, R.R. Qiao, M.Y. Gao. Macromol. Rapid Commun. Vol. 31(2001), p.1805.

Google Scholar

[17] C.S. Lee, H.H. Chang, P.K. Bae, J.Y. Jung, B.H. Chung. Macromol. Biosci. Vol. 13(2013), p.321.

Google Scholar

[18] Y.W. Jun J.H. Lee, J. Cheon. Angew. Chem. Int. Ed. Vol. 47(2008), p.5122.

Google Scholar

[19] Y.M. Zhai J.F. Zhai Y.L. Wang S.J. Guo,W. Ren S.J. Dong. J. Phys. Chem. C Vol. 113(2009), p.7009.

Google Scholar