[1]
Alves de Sousa RJ, Yoon JW, Cardoso RPR, Fontes Valente RA, On the used of a reduced enhanced solid-shell finite element for sheet metal forming applications. Int J Plasticity, 23(2007) 490-515.
DOI: 10.1016/j.ijplas.2006.06.004
Google Scholar
[2]
Zhu X.K., and Y.J. Chao, Numerical Simulation of Transient Temperature and Residual Stresses in Friction Stir Welding of 304L Stainless Steel. Journal of Materials Processing Technology, 146. 2(2004)263-272.
DOI: 10.1016/j.jmatprotec.2003.10.025
Google Scholar
[3]
Z. Feng, X.L. Wang, S.A. David, et al, Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6. Science and Technology of Welding and Jointing, 4(2007)348-356.
DOI: 10.1179/174329307x197610
Google Scholar
[4]
T. li, Q.Y. Shi, H.K. Li, Residual stresses simulation for friction stir welded joint. Science and Technology of Welding and Joining, 8(2007)634-640.
DOI: 10.1179/174329307x236832
Google Scholar
[5]
Zhou Caizhi, Yang Xinqi, Luan Guohong, Research Progress on the Fatigue Behavior of Friction Stir Welded Joints. Rare Metal Materials And Engineering, 7(2006) 1172-1176.
Google Scholar
[6]
Prasanna P., B.S. Rao, G.K. Rao, Finite Element Modeling for Maximum Temperature in Friction Stir Welding and its Validation. Journal of Advanced Manufacturing Technology, 51(2010)925-933.
DOI: 10.1007/s00170-010-2693-4
Google Scholar
[7]
H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding Model. Simul. Mater. Sci. Eng, 12(2004)143-157.
DOI: 10.1088/0965-0393/12/1/013
Google Scholar
[8]
Zhang Teng, He Yuting, Wu Liming, Wang Xinbo, Fatigue Performance of Friction Stir Welded Butt Joints for 2524-T3 Aluminum Alloy. Materials for Mechanical Engineering, 5(2012) 47-49.
Google Scholar