Characteristics of Slow Light in a Photonic Crystal Coupled-Cavity Waveguide

Article Preview

Abstract:

A two-dimensional (2D) triangular lattice photonic crystal coupled-cavity waveguide is designed and optimized. The transmission spectrum of the PC waveguide with TE polarization is calculated by using the finite-difference time-domain (FDTD) method, and the group velocity of c/131.18 at the wavelength is obtained. Through optimizing the parameters of photonic crystal waveguide, different resonance length are obtained by changing the number of the continous air holes. The smallest group velocity is obtained to be c/2209 in the coupled-cavity waveguide with 15 air holes. The mechanism of slow light in the coupled-cavity waveguide of photonic crystal is analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

437-441

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Yablonovitch. Phys. Rev. Lett. Vol. 20, 1987, p. (2059).

Google Scholar

[2] S. John. Phys. Rev. Lett. Vol. 23, 1987, p.2486.

Google Scholar

[3] R. P. Villeneuve, S. Fan, and J. D. Joannopoulos. Phys. Rev. B . Vol. 11, 1996 , p.7837.

Google Scholar

[4] R. W. Boyd, D. J. Gauthier, and A. L. Gaeta. Opt. Photon. News. Vol. 4, 2006, p.18.

Google Scholar

[5] H. Altug and J. Vučković. Opt. Exp. Vol. 22, 2005, p.8819.

Google Scholar

[6] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama. Phys. Rev. Lett. Vol. 25, 2001, p.253902.

Google Scholar

[7] Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab. Nature. Vol. 3, 2005, p.65.

Google Scholar

[8] Y. A. Vlasov, and S. J. McNab. Opt. Lett. Vol. 1, 2006, p.50.

Google Scholar

[9] J. Jágerská, N. L. Thomas , V. Zabelin , R. Houdré , B. Wim, P. Dumon, and R. Baets. Opt. Exp. Vol. 3, 2009, p.359.

DOI: 10.1364/ol.34.000359

Google Scholar

[10] X. Y. Du, W. H. Zheng, G. Ren, K. Wang, M. X. Xing, and L. H. Chen. Acta Phys. Sin. Vol. 11, 2008, p.7005.

Google Scholar

[11] J. Grgić, J. G. Pedersen, S. Xiao, and N. A. Mortensen. Photonics and Nanostructures. Vol. 8, 2010, p.56.

Google Scholar

[12] V. Savona. Phys. Rev. B. Vol. 8, 2011, p.085301.

Google Scholar

[13] H. Altuga, and J. Vuckovic. Appl. Phys. Lett. Vol. 86, 2005, p.111102.

Google Scholar

[14] J Hou, H Wu, DS Citrin, W Mo, D Gao, Z Zhou. Opt Express. Vol. 10, 2010, p.10567.

Google Scholar

[15] Q. Liu, Z. B. Ouyang, and S. Albin. Opt Express . Vol. 19, 2011, p.4795.

Google Scholar

[16] W. H. Bi, J. P. Li and Y. F. Qi. Acta Optica Sinica. Vol. 32, 2012, p.0606001.

Google Scholar

[17] I. Andonegui and A. J. Garcia-Adeva. Op Express. Vol. 21, 2013, p.4072.

Google Scholar