Synthesis and Characterization of Ti2AlC and Ti2AlN MAX Phase Coatings Manufactured in an Industrial-Size Coater

Article Preview

Abstract:

Due to a nanolaminate structure, MAX phases are materials with an interesting set of properties. The present paper is focussed on the synthesis and characterization of Ti2AlC and Ti2AlN MAX phase coatings. They were deposited by dc magnetron sputtering from single elemental Ti, Al, and C targets (Ti-Al-C system); in addition to Ti and Al, nitrogen was used for the Ti-Al-N system. XRD analysis revealed the growth of cubic Ti3AlC and Ti3AlN perovskite phases in the coatings deposited at 540°C. After coating deposition an annealing treatment at 800, 1000 and 1200°C was carried out. The results indicate that annealing for 1 h in vacuum at 800°C enhances crystallization of the Ti2AlN and Ti2AlC MAX phases. It was also observed that annealing at temperatures higher than 1000°C enhances the decomposition of both phases, Ti2AlC and Ti2AlN, and gives rise to the formation of the carbide and nitride phases TiCx and TiNx, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 89-91)

Pages:

208-213

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. W. Barsoum, Prog. Solid State Chem. 28 (2000) 201-281.

Google Scholar

[2] M. W. Barsoum, M. Ali, and T. El-Raghy, Vol 31A (2000) 1857-1865.

Google Scholar

[3] W. Jeitschko, H. Novotny, F. Benesovsky, Monatsch. Chem. 94 (1963) 1198.

Google Scholar

[4] M. W. Barsoum, H-I. Yoo, IK. Polushina, V. Yu. Rud, T. El-Raghy. Phys. Rev. B 62 (2000) 10194.

Google Scholar

[5] M. W. Barsoum, D. Brodkin, and T. El-Raghy, Scripta Materialia 3 (1997) 535.

DOI: 10.1016/s1359-6462(96)00418-6

Google Scholar

[6] A. T. Procopio, M. W. Barsoum, and T. El-Raghy, Metall. Mater. Trans. A Vol 31A (2000) 333.

Google Scholar

[7] C. Raucault, F. Langlais, R. Naslain, Y. Kihn, J. Mater. Res. 29 (1994) 3941.

Google Scholar

[8] J. Emmerlich, D. Music, J. M. Schneider, P. Eklund, O. Wilhelmsson, U. Jansson, H. Högberg, L. Hultman, Acta Materialia 55 (2007) 1479-1488.

DOI: 10.1016/j.actamat.2006.10.010

Google Scholar

[9] M. Beckers, N. Schell, RMS. Martins, A. Mücklich, W. Möller. Appl. Phys. Letters 89 (2006) 074101.

DOI: 10.1063/1.2335681

Google Scholar

[10] L. E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York and London, (1971).

Google Scholar

[11] W. H. Tian and M. Nemoto, Intermetallics 5 (1997) 237-244.

Google Scholar

[12] T. Joelsson, A. Hörling, J. Birch, and L. Hultman, Appl. Physics Letters 86 (2005) 111913.

DOI: 10.1063/1.1882752

Google Scholar

[13] O. Wilhelmsson, J. P. Palmquist, E. Lewin, J. Emmerlich. J. of Crystal Growth 291(2006) 290300.

Google Scholar

[14] O. Wilhelmsson, J. P. Palmquist, Appl. Phys. Letters. 85 (2004) 1066-1068.

Google Scholar

[15] Y. Zhou and Z. Sun, Phys. Rev. B Vol 61 (2000) 19.

Google Scholar

[16] I. M. Low, Z. Oo, K. E. Prince. J. Am. Ceram. Soc, 90.

Google Scholar

[8] (2007) 2610-2614.

Google Scholar

[17] Z. J. Lin, M. J. Zhou, M. S. Li, J. Y. Wang and Y. C. Zhou, Scripta Materialia 56 (2007) 11151118.

Google Scholar

[18] J. Magnan, G. C. Weatherly and M. C. Cheynet, Metall. Mater. Trans. A, Vol 30A (1999) 19.

Google Scholar

[19] Z. Sun, D. Music, R. Ahuja, S. Li, J. Schneider, Phys. Rev. B70 (2004) 092102.

Google Scholar

[20] W. H. Tian, T. Santo, M. Nemoto, Phy Magazine A, 68: 5 (1993) 965-976.

Google Scholar

[21] J. C. Schuster and J. Bauer, J. of Solid State Chem. 53, (1984) 260-265.

Google Scholar

[22] M. Magnuson, M. Mattesini, O. Wilhelmsson, J. Emmerlich, J. P. Palmquist, S. Li, R. Ahuja, L. Hultman, Phys. Rev. B74 (2006) 205102.

Google Scholar

[23] J. Wang, Y. Zhou, T. Liao, J. Zhang, Z. Lin Scripta Materialia 58 (2008) 227-230.

Google Scholar

[24] T. Liao, J. Wang, Y. Zhou, J Phys. Condens. Matter 18 (2006) 6183-6192.

Google Scholar

[25] M. W. Barsoum and T. El-Raghy, Synthesis and Characterization of Remarkable Ceramic: Ti3SiC2, J. Am. Ceram. Soc., 79 (1996) 1953-(1956).

DOI: 10.1111/j.1151-2916.1996.tb08018.x

Google Scholar

[26] M. W. Barsoum and T. El-Raghy, A Progress Report on Ti3SiC2, Ti3GeC2, and H-Phases, M2BX, J. Mater. Synth. Process, 5 (1997) 197.

Google Scholar

[27] T. El-Raghy and M. W. Barsoum, Processing and Mechanical Properties of Ti3SiC2: I, Reaction Path and Microstructure Evolution, J. Am. Ceram. Soc, 82, (1999) 2849-2854.

DOI: 10.1111/j.1151-2916.1999.tb02166.x

Google Scholar

[28] J. M. Schneider, Z. Suna, R. Mertens, F. Uestela, R. Ahujac, Solid State Communications 130 (2004) 445-449.

Google Scholar

[29] J. M. Schneider, R. Mertens, D. Music, Jour of Applied Phys 99 (2006) 013501.

Google Scholar

[30] C. Walter, C. Martinez, T. El-Raghy, J.M. Schneider, Steel research int. 76 (2005) No. 2/3.

Google Scholar