An Assessment of Bulk and Local Stored Energy Measurements in Ultrafine Grained Interstitial Free Steel

Article Preview

Abstract:

The evolution of stored energy and associated thermal behaviour was investigated for an ultrafine grained Ti-IF steel severely deformed by Equal Channel Angular Pressing (ECAP) followed by cold rolling at ambient and liquid nitrogen temperatures. Bulk stored energy measurements by Differential Scanning Calorimetry (DSC) returned 350-600 whereas local stored energy estimates from microhardness, Electron Back-Scattering Diffraction (EBSD) and X-ray line profile analysis resulted in 5-140 . Higher bulk stored energy values correspond to the enthalpy release from all sources of strain in the material volume as well as Ti precipitation during annealing while the lower local stored energy range alludes only to dislocation content or internal stresses. An apparent activation energy of 500-550 suggests sluggish recrystallisation due to excess of Ti in solid solution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 89-91)

Pages:

244-249

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. B. Bever, D. L. Holt, A. L. Titchener, Progress in Materials Science 17 (1973) 5-177.

Google Scholar

[2] M. Taheri, H. Weiland, A. Rollett, Metallurgical and Materials Transactions A 37 (2006) 19-25.

Google Scholar

[3] A. Borbely, J. H. Driver, T. Ungar, Acta Materialia 48 (2000) 2005-(2016).

Google Scholar

[4] S. H. Choi, Acta Materialia 51 (2003) 1775-1788.

Google Scholar

[5] K. Mukunthan, E. Hawbolt, Metallurgical and Materials Transactions A 27 (1996) 3410-3423.

Google Scholar

[6] N. Rajmohan, Y. Hayakawa, J. A. Szpunar, J. H. Root, Acta Materialia 45 (1997) 2485-2494.

Google Scholar

[7] F. Scholz, E. Woldt, Journal of Thermal Analysis and Calorimetry 64 (2001) 895-903.

DOI: 10.1023/a:1011558511053

Google Scholar

[8] H. Fecht, E. Hellstern, Z. Fu, W. Johnson, Metallurgical and Materials Transactions A 21 (1990) 2333-2337.

Google Scholar

[9] Y. Ivanisenko, R. K. Wunderlich, R. Z. Valiev, H. J. Fecht, Scripta Materialia 49 (2003) 947952.

Google Scholar

[10] T. R. Malow, C. C. Koch, Acta Materialia 45 (1997) 2177-2186.

Google Scholar

[11] C. H. Moelle, H. J. Fecht, Nanostructured Materials 6 (1995) 421-424.

Google Scholar

[12] S. Li, A. A. Gazder, I. J. Beyerlein, E. V. Pereloma, C. H. J. Davies, Acta Materialia 54 (2006) 1087-1100.

Google Scholar

[13] H. E. Kissinger, Analytical Chemistry 29 (1957) 1702 - 1706.

Google Scholar

[14] A. A. Gazder, The Mechanical, Microstructure and Texture properties of Interstitial Free steel subjected to Equal Channel Angular Extrusion, PhD Thesis, Monash University, Melbourne, Australia, (2007).

DOI: 10.4028/www.scientific.net/msf.426-432.2693

Google Scholar

[15] F. J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Pergamon Press, Oxford, (1995).

Google Scholar

[16] T. De Keijser, J. I. Langford, E. J. Mittemeijer, A. B. P. Vogels, Journal of Applied Crystallography 15 (1982) 308.

Google Scholar

[17] G. R. Stibitz, Physics Review 49 (1936) 862.

Google Scholar

[18] J. De Messemaeker, B. Verlinden, J. V. Humbeek, Materials Science Forum 467-470 (2004) 1295-1300.

DOI: 10.4028/www.scientific.net/msf.467-470.1295

Google Scholar

[19] Y. Ivanisenko, A. V. Serugeeva, A. Minkow, R. Z. Valiev, H. J. Fecht, Mechanical Properties and Thermal Stability of Nano-Structured Armco Iron Produced by High Pressure Torsion, in: M. Zehetbauer, R. Z. Valiev (Eds. ), Nanomaterials by Severe Plastic Deformation, 2005, pp.453-458.

DOI: 10.1002/3527602461.ch8c

Google Scholar

[20] S. F. Antani, P. G. Klemens, Physical Review B 11 (1975) 2771.

Google Scholar

[21] M. J. Zehetbauer, J. Kohout, E. Schafler, F. Sachslehner, A. Dubravina, Journal of Alloys and Compounds 378 (2004) 329-334.

DOI: 10.1016/j.jallcom.2004.01.039

Google Scholar

[22] D. Setman, E. Schafler, E. Korznikova, M. J. Zehetbauer, Materials Science and Engineering: A 493 (2008) 116-122.

DOI: 10.1016/j.msea.2007.06.093

Google Scholar

[23] E. Schafler, G. Steiner, E. Korznikova, M. Kerber, M. J. Zehetbauer, Materials Science and Engineering: A 410-411 (2005) 169-173.

DOI: 10.1016/j.msea.2005.08.070

Google Scholar

[24] X. L. Wu, B. Li, E. Ma, Applied Physics Letters 91 (2007) 141908-141903.

Google Scholar

[25] J. Shi, X. Wang, Journal of Materials Engineering and Performance 8 (1999) 641-648.

Google Scholar

[26] S. V. Subramanian, M. Prikryl, B. D. Gaulin, D. D. Clifford, S. Benincasa, I. O'Reilly, ISIJ International 34 (1994) 61-69.

DOI: 10.2355/isijinternational.34.61

Google Scholar

[27] J. -Y. Choi, B. -S. Seong, S. C. Baik, H. C. Lee, ISIJ International 42 (2002) 889-893.

Google Scholar