Crack Tip Dislocations Observed by Combining Scanning Transmission Electron Microscopy and Computed Tomography

Article Preview

Abstract:

Crack tip dislocations and dislocations introduced by three point-bending tests at high temperature are observed by combinating scanning transmission electron microscopy and computed tomography (STEM-CT). Commercially available P type (001) single crystal silicon wafers were employed. A series of STEM image was acquired from -60º to +60º in tilt range with 2º in tilt step. The diffraction vector was maintained close to g(hkl) = 220 during the acquisition by adjusting the [110] direction of the sample parallel to the tilt axis of the holder. Reconstructed images of dislocations revealed dislocation structures in three-dimension.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 89-91)

Pages:

473-478

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.R. Rice and R. Thomson: Philos. Mag. Vol. 29 (1974), p.73.

Google Scholar

[2] R. Thomson: Philos. Mag. A Vol. 75 (1997), p.749.

Google Scholar

[3] R. Thomson: J. Mater. Sci. Vol. 13 (1978), p.128.

Google Scholar

[4] J. Weertman: Acta Metall. Vol. 26 (1978), p.1731.

Google Scholar

[5] B.S. Majumdar and S.J. Burns: Acta Metall. Vol. 29 (1981), p.579.

Google Scholar

[6] R. Thomson, in: F. Seitz and D. Turnbull (Eds. ), Solid State Physics, vol. 39, Academic Press, INC., Orlando, San Diego, New York, Austin, Boston, London, Sydney, Tokyo, Toronto, 1986, p.1.

DOI: 10.1002/abio.370060416

Google Scholar

[7] V. Bulatov, F.F. Abraham, L. Kubin, B. Devincre and S. Yip: Nature Vol. 391 (1998), p.669.

DOI: 10.1038/35577

Google Scholar

[8] K. Higashida, N. Narita, M. Tanaka, T. Morikawa, Y. Miura and R. Onodera: Philos. Mag. A Vol. 82 (2002), p.3263.

Google Scholar

[9] M. Tanaka, K. Higashida, T. Kishikawa and T. Morikawa: Mater. Trans. Vol. 43 (2002), p.2169.

Google Scholar

[10] K. Kaneko, R. Nagayama, K. Inoke, W. -J. Moon, Z. Horita, Y. Hayashi and T. Tokunaga: Scripta Mater. Vol. 52 (2005), p.1205.

DOI: 10.1016/j.scriptamat.2005.03.007

Google Scholar

[11] K. Kimura, S. Hata, S. Matsumura and T. Horiuchi: J. Electron Microsc. Vol. 54 (2005), p.373.

Google Scholar

[12] P.A. Midgley and M. Weyland: Ultramicroscopy Vol. 96 (2003), p.413.

Google Scholar

[13] K. Kaneko, K. Inoke, K. Sato, K. Kitawaki, H. Higashida, I. Arslan and P.A. Midgley: Ultramicroscopy Vol. 108 (2008), p.210.

DOI: 10.1016/j.ultramic.2007.04.020

Google Scholar

[14] K. Kaneko, K. Inoke, B. Freitag, A.B. Hungria, P.A. Midgley, T.W. Hansen, J. Zhang, S. Ohara and T. Adschiri: Nano Lett. Vol. 7 (2007), p.421.

DOI: 10.1021/nl062677b

Google Scholar

[15] J.S. Barnard, J. Sharp, J.R. Tong and P.A. Midgley: Science Vol. 313 (2006), p.319.

Google Scholar

[16] J.H. Sharp, J.S. Barnard, K. Kaneko, K. Higashida and P.A. Midgley: J. Phys. Conf. Ser Vol. 126 (2008), p.012013.

Google Scholar

[17] M. Tanaka, K. Higashida, K. Kaneko, S. Hata and M. Mitsuhara: Scripta Mater. Vol. 59 (2008), p.901.

Google Scholar

[18] http: /www. melbuild. com.

Google Scholar

[19] M. Imai and K. Sumino: Philos. Mag. A Vol. 47 (1983), p.599.

Google Scholar

[20] K. Higashida, T. Kawamura, T. Morikawa, Y. Miura, N. Narita and R. Onodera: Mater. Sci. Eng., A Vol. 319-321 (2001), p.683.

Google Scholar

[21] M. Tanaka, K. Higashida and T. Haraguchi: Mater. Sci. Eng., A Vol. 387-389 (2004), p.433.

Google Scholar