Crystallographic Texture of Induction-Welded and Heat-Treated Pipeline Steel

Article Preview

Abstract:

Large-diameter steel pipes are produced by induction seam-welding followed by induction-assisted heat treatment. The microstructure and distribution of crystal orientations have been studied and related to the mechanical properties of the welded regions. The welding and heat-treatment process leads to a microstructure, a simple observation of which can not explain the observed variations in toughness in the vicinity of the welding joint, because the crystallographic grain size, which represents the scale of similarly oriented adjacent grains, is much coarser than the ordinary grain size. Furthermore, heating the affected zone into the austenite phase field followed by cooling does not completely eliminate the coarse regions of similarly oriented grains. The consequences of this on mechanical properties are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 89-91)

Pages:

651-656

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Shiga, A. Kamada, T. Hatomura, K. Hirose, J. Junichi, and T. Sekine. Development of large diameter high strength line pipes for low temperature services. Technical Report 4, Kawasaki Steel Technical Report, Kawasaki Steel, Japan, 1981, pp.97-109.

Google Scholar

[2] J. Q. Wang, A. Atrens, D. R. Cousens, and N. Kinaev: Journal of Materials Science Vol. 34 (1999), p.1721.

Google Scholar

[3] M. C. Zhao, K. Yang, F. R. Xiao, and Y. Y. Shan: Materials Science & Engineering A Vol. 355 (2003), p.126.

Google Scholar

[4] E. Treiss: 3R International Vol. 20(11) (1981), p.627.

Google Scholar

[5] J. G. Williams, C. R. Killmore, F. J. Barbaro, A. Meta, and L. Fletcher, in: Microalloying '95 Conference Proceedings, edited by M. Korchynsky, A. J. DeArdo, P. Repasi, and G. Tither ISS-AIME, Warrendale, Pennsylvania (1995), p.117.

Google Scholar

[6] C. Yu: Tube International March (1996), p.153.

Google Scholar

[7] N. Pradhan, N. Banerjee, B. B. Reddy, S. K. Sahay, D. S. Basu, P. K. Bhor, S. Das, and S. Bhattyacharya: Scandinavian Journal of Metallurgy Vol. 34 (2005), p.232.

DOI: 10.1111/j.1600-0692.2005.00721.x

Google Scholar

[8] J. P. Benedict, R. Anderson, S. J. Klepeis, and M. Chaker, in: volume 199 of Materials Research Society Symposium Proceedings (1990), p.189.

Google Scholar

[9] J. G. Williams, C. R. Killmore, F. J. Barbaro, J. Piper, and Fletcher: Materials Forum Vol. 20 (1996), p.13.

Google Scholar

[10] G. R. Speich, L. J. Cuddy, C. R. Gordon, and A. J. DeArdo, in: Phase Transformations in Ferrous Alloys edited by A. R. Marder and J. I. Goldstein, TMS-AIME., Warrendale, Pennsylvania, USA (1984), p.341.

Google Scholar

[11] I. Tamura: Trans. ISIJ Vol. 27 (1987), p.763.

Google Scholar

[12] R. L. Bodnar and S. S. Hansen: Metallurgical & Materials Transactions A Vol. 25A (1994), p.665.

Google Scholar

[13] S. Jones and H. K. D. H. Bhadeshia: Acta Materialia Vol. 45 (1997), p.2911.

Google Scholar

[14] S. Jones and H. K. D. H. Bhadeshia: Metallurgical & Materials Transactions A Vol. 28A (1997), p. (2005).

Google Scholar

[15] A. Lambert-Perlade, A. F. Gourgues, and A. Pineau: Acta Materialia Vol. 52 (2004), p.2337.

Google Scholar

[16] Y. M. Kim, S. Y. Shu, H. Lee, B. Hwang, S. Lee, and N. J. Kim: Metallurgical &Materials Transactions A Vol. 38 (2007), p.1731.

Google Scholar

[17] S. T. Kimmins and D. J. Gooch: Metal Science Vol. 17 (1983), p.519.

Google Scholar