Catalytic Activity of Oxidation-Reduction Pre-Treated Ni3Al for Methane Steam Reforming

Article Preview

Abstract:

The catalytic activity of oxidation-reduction pre-treated Ni3Al powder for methane steam reforming was examined. The oxidation-reduction pre-treatment consisted of two steps: oxidation in air at various temperatures from 973 to 1373 K, and then followed by reduction in H2 at 873 K. It was found that the oxidation-reduction treatments significantly reduced the onset temperature of activity, i.e., improved the activity of Ni3Al powder at low temperatures. The characterization of Ni3Al surface showed that an outer surface layer of fine NiO particles were formed on the surface of Ni3Al after oxidation. These NiO particles were reduced to metallic Ni by the subsequent reduction treatment, resulting in the high activity for methane steam reforming. These results indicate that the Ni3Al can form highly active surface structure with oxidation-reduction treatment, having excellent heat resistance.

You might also be interested in these eBooks

Info:

[1] J.R. Rostrup-Nielsen, J. Sehested and J.K. Norskov: Adv. Catal. Vol. 47 (2002), p.65.

Google Scholar

[2] H.F. Rase: Handbook of Commercial Catalysts: Heterogeneous Catalysts (CRC Press, U.S.A., 2000), p.405.

Google Scholar

[3] J.R. Rostrup-Nielsen, J.H. Bak Hansen and L.M. Aparicio: Sekiyu Gakkaishi Vol. 40 (1997) p.366.

Google Scholar

[4] J. Sehested, A. Carlsson, T.V.W. Janssens, P.L. Hansen and A.K. Datye: J. Catal. Vol. 197 (2001), p.200.

Google Scholar

[5] D.P. Pope and S.S. Ezz: Int. Mater. Rev. Vol. 29 (1984), p.136.

Google Scholar

[6] N.S. Stoloff: Int. Mater. Rev. Vol. 34 (1989), p.153.

Google Scholar

[7] M. Yamaguchi and Y. Umakoshi: Mater. Sci. Vol. 34 (1990), p.1.

Google Scholar

[8] M. Demura, Y. Suga, O. Umezawa, K. Kishida E.P. George and T. Hirano: Intermetallics Vol. 9 (2001), p.157.

DOI: 10.1016/s0966-9795(00)00121-7

Google Scholar

[9] Y. Xu, S. Kameoka, K. Kishida, M. Demura, A.P. Tsai and T. Hirano: Intermetallics Vol. 13 (2005), p.151.

Google Scholar

[10] D.H. Chun, Y. Xu, M. Demura, K. Kishida, M.H. Oh, T. Hirano and D.M. Wee: Cata. Lett. Vol. 106 (2006), p.71.

Google Scholar

[11] D.H. Chun, Y. Xu, M. Demura, K. Kishida, D.M. Wee and T. Hirano: J. Catal. Vol. 243 (2006), p.99.

Google Scholar

[12] Y. Ma, Y. Xu, M. Demura, D.H. Chun, G.Q. Xie and T. Hirano: Catal. Lett. Vol. 112 (2006), p.31.

Google Scholar

[13] Y. Ma, Y. Xu, M. Demura, D.H. Chun and T. Hirano: Appl. Catal. B: Enviromental Vol. 80 (2008), p.15.

Google Scholar

[14] D. Kamikihara, Y. Xu, M. Demura and T. Hirano: Trans. Mater. Res. Soc. Japan Vol. 33 (2008), p.1105.

Google Scholar

[15] J.H. Jang, Y. Xu, M. Demura, D.M. Wee and T. Hirano: Proc. Mater. Res. Soc. (2008, Boston), accepted.

Google Scholar

[16] Y. Xu, M. Demura and T. Hirano: Appl. Surf. Sci. Vol. 254 (2008), p.5413.

Google Scholar

[17] B. Mile, D. Stirling, M.A. Zammitt, A. Lovell and M. Webb: J. Catal. Vol. 114 (1988), p.217.

Google Scholar

[18] S.D. Robertson, B.D. McNicol: J.H. DE Baas, S.C. Kloet and J.W. Jenkins: J. Catal. Vol. 37 (1975), p.424.

Google Scholar