[1]
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35) (2010) 3906-3924.
DOI: 10.1002/adma.201001068
Google Scholar
[2]
D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters, 76(20) (2000) 2868-2870.
DOI: 10.1063/1.126500
Google Scholar
[3]
T.E. Chang, L.R. Jensen, A. Kisliuk, R.B. Pipes, R.B. Pyrz, A.P. Sokolov Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 46(2) (2005) 439-444.
DOI: 10.1016/j.polymer.2004.11.030
Google Scholar
[4]
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887) (2008) 385-388.
DOI: 10.1126/science.1157996
Google Scholar
[5]
J. Ma, Q. Meng, A. Michelmore, N. Kawashima, I. Zaman, C. Bengtsson, H. -C. Kuan, Covalently bonded interfaces for polymer/graphene composites. Journal of Materials Chemistry A, 1(13) (2013) 4255-4264.
DOI: 10.1039/c3ta01277h
Google Scholar
[6]
D.E. Kranbuehl, M. Cai, A.J. Glover, H.C. Schniepp, Measurement of the interfacial attraction between graphene oxide sheets and the polymer in a nanocomposite. Journal of Applied Polymer Science, 122(6) (2011) 3740-4.
DOI: 10.1002/app.34787
Google Scholar
[7]
M.C. Strus, C.I. Cano, R. Byron Pipes, C.V. Nguyen, A. Raman, Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope. Composites Science and Technology, 69(10) (2009) 1580-1586.
DOI: 10.1016/j.compscitech.2009.02.026
Google Scholar
[8]
C.A. Cooper, S.R. Cohen, A.H. Barber, H.D. Wagner, Detachment of nanotubes from a polymer matrix. Applied Physics Letters, 81(20) (2002) 3873-5.
DOI: 10.1063/1.1521585
Google Scholar
[9]
Y. -Y. Jia, Z. -R. Chen, W. -Y. Yan, A Numerical Model to Simulate the Pullout of Carbon Fibre with Radially Grown Carbon Nanotubes. In: 13th International Conference on Fracture Beijing, China, 16-21 June 2013. p. S42-014.
Google Scholar
[10]
S.K. Pregler, J. Byeong-Woo, S.B. Sinnott, Ar beam modification of nanotube based composites using molecular dynamics simulations. Composites Science and Technology, 68(9) (2008) 2049-55.
DOI: 10.1016/j.compscitech.2008.02.037
Google Scholar
[11]
K. Liao, S. Li, Interfacial characteristics of a carbon nanotube-polystyrene composite system. Applied Physics Letters, 79(25) (2001) 4225-7.
DOI: 10.1063/1.1428116
Google Scholar
[12]
M.J. van den Bosch, P.J.G. Schreurs, M.G.D. Geers, Identification and characterization of delamination in polymer coated metal sheet. Journal of the Mechanics and Physics of Solids, 56(11) (2008) 3259-3276.
DOI: 10.1016/j.jmps.2008.07.006
Google Scholar
[13]
X. You, H. Zhao, Y. Wei, Determination of interfacial mechanical parameters for an Al/Epoxy/Al2o3 system by using peel test simulations. Acta Mechanica Solida Sinica, 21(3) (2008) 198-206.
DOI: 10.1007/s10338-008-0823-4
Google Scholar
[14]
P. -H. Huang, Molecular dynamics for lateral surface adhesion and peeling behavior of single-walled carbon nanotubes on gold surfaces. Materials Chemistry and Physics, 131(1-2) (2011) 297-305.
DOI: 10.1016/j.matchemphys.2011.09.045
Google Scholar
[15]
N. Sasaki, H. Okamoto, S. Masuda, K. Miura, N. Itamura, Simulated Nanoscale Peeling Process of Monolayer Graphene Sheet: Effect of Edge Structure and Lifting Position. Journal of Nanomaterials, (2010) 742127 (12 pp. ).
DOI: 10.1155/2010/742127
Google Scholar
[16]
A.P. Awasthi, D.C. Lagoudas, D.C. Hammerand, Modeling of graphene-polymer interfacial mechanical behavior using molecular dynamics. Modelling and Simulation in Materials Science and Engineering, 17(1) (2009).
DOI: 10.1088/0965-0393/17/1/015002
Google Scholar
[17]
R.S. Rivlin, The effective work of adhesion. Vol. 9, Paint Technology, (1944).
Google Scholar
[18]
C. Kovalchick, S. Xia, G. Ravichandran, Cohesive zone law extraction from an experimental peel test. Costa Mesa, CA, United states2013. pp.237-245.
Google Scholar
[19]
W. -S. Kuo, N. -H. Tai, T. -W. Chang, Deformation and fracture in graphene nanosheets. Composites Part A: Applied Science and Manufacturing, 51 (2013) 56-61.
DOI: 10.1016/j.compositesa.2013.03.020
Google Scholar
[20]
H. Raza, SpringerLink, Graphene nanoelectronics metrology, synthesis, properties and applications, (2012).
Google Scholar
[21]
V. Tvergaard, Effect of fibre debonding in a whisker-reinforced metal. Materials Science and Engineering A, A125(2) (1990) 203-213.
DOI: 10.1016/0921-5093(90)90170-8
Google Scholar
[22]
J.L. Chaboche, R. Girard, P. Levasseur, On the interface debonding models. International Journal of Damage Mechanics, 6(3) (1997) 220-257.
DOI: 10.1177/105678959700600302
Google Scholar
[23]
L. De Lorenzis, G. Zavarise, Modeling of mixed-mode debonding in the peel test applied to superficial reinforcements. International Journal of Solids and Structures, 45(20) (2008) 5419-5436.
DOI: 10.1016/j.ijsolstr.2008.05.024
Google Scholar
[24]
M.L. Benzeggagh, M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56(4) (1996) 439-49.
DOI: 10.1016/0266-3538(96)00005-x
Google Scholar
[25]
N.F. Knight Jr, I.S. Raju, K. Song, Fracture mechanics analyses of subsurface defects in reinforced carbon-carbon joggles subjected to thermo-mechanical loads. Denver, CO, United states2011.
DOI: 10.2514/6.2011-2050
Google Scholar
[26]
A.J. Kinloch, C.C. Lau, J.G. Williams, Peeling of flexible laminates. International Journal of Fracture, 66(1) (1994) 45-70.
DOI: 10.1007/bf00012635
Google Scholar