Numerical Modeling of Graphene/Polymer Interfacial Behaviour Using Peel Test

Article Preview

Abstract:

Graphene, a flat monolayer of carbon atoms packed in a 2D honeycomb lattice, has outstanding mechanical properties and can be used as a reinforcement for developing composites, such as graphene/polymer composites. The interface properties between the reinforcing and the matrix phase influence significantly the performance of these new nanocomposites. Very limited experimental studies have been carried out to evaluate the interfacial characteristics of the nanocomposites due to difficulties in accessing individual interfaces. Evaluation of interfacial behaviour of the nanocomposites using numerical studies is available, but these studies mainly deal with separation in the shear (sliding) mode performed by pullout test. The purpose of this study is to develop a microscopic numerical model to simulate graphene/polymer peel test, where opening mode of fracture is dominated. A plane-strain model is developed using the finite element method (Abaqus). The interface bonding between the graphene and polymer matrix is described by using a cohesive zone model. The numerical results are compared with an experimental study published in literature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

1119-1124

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35) (2010) 3906-3924.

DOI: 10.1002/adma.201001068

Google Scholar

[2] D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters, 76(20) (2000) 2868-2870.

DOI: 10.1063/1.126500

Google Scholar

[3] T.E. Chang, L.R. Jensen, A. Kisliuk, R.B. Pipes, R.B. Pyrz, A.P. Sokolov Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 46(2) (2005) 439-444.

DOI: 10.1016/j.polymer.2004.11.030

Google Scholar

[4] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887) (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[5] J. Ma, Q. Meng, A. Michelmore, N. Kawashima, I. Zaman, C. Bengtsson, H. -C. Kuan, Covalently bonded interfaces for polymer/graphene composites. Journal of Materials Chemistry A, 1(13) (2013) 4255-4264.

DOI: 10.1039/c3ta01277h

Google Scholar

[6] D.E. Kranbuehl, M. Cai, A.J. Glover, H.C. Schniepp, Measurement of the interfacial attraction between graphene oxide sheets and the polymer in a nanocomposite. Journal of Applied Polymer Science, 122(6) (2011) 3740-4.

DOI: 10.1002/app.34787

Google Scholar

[7] M.C. Strus, C.I. Cano, R. Byron Pipes, C.V. Nguyen, A. Raman, Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope. Composites Science and Technology, 69(10) (2009) 1580-1586.

DOI: 10.1016/j.compscitech.2009.02.026

Google Scholar

[8] C.A. Cooper, S.R. Cohen, A.H. Barber, H.D. Wagner, Detachment of nanotubes from a polymer matrix. Applied Physics Letters, 81(20) (2002) 3873-5.

DOI: 10.1063/1.1521585

Google Scholar

[9] Y. -Y. Jia, Z. -R. Chen, W. -Y. Yan, A Numerical Model to Simulate the Pullout of Carbon Fibre with Radially Grown Carbon Nanotubes. In: 13th International Conference on Fracture Beijing, China, 16-21 June 2013. p. S42-014.

Google Scholar

[10] S.K. Pregler, J. Byeong-Woo, S.B. Sinnott, Ar beam modification of nanotube based composites using molecular dynamics simulations. Composites Science and Technology, 68(9) (2008) 2049-55.

DOI: 10.1016/j.compscitech.2008.02.037

Google Scholar

[11] K. Liao, S. Li, Interfacial characteristics of a carbon nanotube-polystyrene composite system. Applied Physics Letters, 79(25) (2001) 4225-7.

DOI: 10.1063/1.1428116

Google Scholar

[12] M.J. van den Bosch, P.J.G. Schreurs, M.G.D. Geers, Identification and characterization of delamination in polymer coated metal sheet. Journal of the Mechanics and Physics of Solids, 56(11) (2008) 3259-3276.

DOI: 10.1016/j.jmps.2008.07.006

Google Scholar

[13] X. You, H. Zhao, Y. Wei, Determination of interfacial mechanical parameters for an Al/Epoxy/Al2o3 system by using peel test simulations. Acta Mechanica Solida Sinica, 21(3) (2008) 198-206.

DOI: 10.1007/s10338-008-0823-4

Google Scholar

[14] P. -H. Huang, Molecular dynamics for lateral surface adhesion and peeling behavior of single-walled carbon nanotubes on gold surfaces. Materials Chemistry and Physics, 131(1-2) (2011) 297-305.

DOI: 10.1016/j.matchemphys.2011.09.045

Google Scholar

[15] N. Sasaki, H. Okamoto, S. Masuda, K. Miura, N. Itamura, Simulated Nanoscale Peeling Process of Monolayer Graphene Sheet: Effect of Edge Structure and Lifting Position. Journal of Nanomaterials, (2010) 742127 (12 pp. ).

DOI: 10.1155/2010/742127

Google Scholar

[16] A.P. Awasthi, D.C. Lagoudas, D.C. Hammerand, Modeling of graphene-polymer interfacial mechanical behavior using molecular dynamics. Modelling and Simulation in Materials Science and Engineering, 17(1) (2009).

DOI: 10.1088/0965-0393/17/1/015002

Google Scholar

[17] R.S. Rivlin, The effective work of adhesion. Vol. 9, Paint Technology, (1944).

Google Scholar

[18] C. Kovalchick, S. Xia, G. Ravichandran, Cohesive zone law extraction from an experimental peel test. Costa Mesa, CA, United states2013. pp.237-245.

Google Scholar

[19] W. -S. Kuo, N. -H. Tai, T. -W. Chang, Deformation and fracture in graphene nanosheets. Composites Part A: Applied Science and Manufacturing, 51 (2013) 56-61.

DOI: 10.1016/j.compositesa.2013.03.020

Google Scholar

[20] H. Raza, SpringerLink, Graphene nanoelectronics metrology, synthesis, properties and applications, (2012).

Google Scholar

[21] V. Tvergaard, Effect of fibre debonding in a whisker-reinforced metal. Materials Science and Engineering A, A125(2) (1990) 203-213.

DOI: 10.1016/0921-5093(90)90170-8

Google Scholar

[22] J.L. Chaboche, R. Girard, P. Levasseur, On the interface debonding models. International Journal of Damage Mechanics, 6(3) (1997) 220-257.

DOI: 10.1177/105678959700600302

Google Scholar

[23] L. De Lorenzis, G. Zavarise, Modeling of mixed-mode debonding in the peel test applied to superficial reinforcements. International Journal of Solids and Structures, 45(20) (2008) 5419-5436.

DOI: 10.1016/j.ijsolstr.2008.05.024

Google Scholar

[24] M.L. Benzeggagh, M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56(4) (1996) 439-49.

DOI: 10.1016/0266-3538(96)00005-x

Google Scholar

[25] N.F. Knight Jr, I.S. Raju, K. Song, Fracture mechanics analyses of subsurface defects in reinforced carbon-carbon joggles subjected to thermo-mechanical loads. Denver, CO, United states2011.

DOI: 10.2514/6.2011-2050

Google Scholar

[26] A.J. Kinloch, C.C. Lau, J.G. Williams, Peeling of flexible laminates. International Journal of Fracture, 66(1) (1994) 45-70.

DOI: 10.1007/bf00012635

Google Scholar