Fatigue Crack Growth in Ultrafine-Grained Copper Obtained by ECAP

Article Preview

Abstract:

The propagation of long fatigue cracks in ultra fine-grained (UFG) copper obtained by equal channel angular pressing (ECAP) is investigated in the mid ΔK range and in the near threshold regime. The crack growth rates in UFG copper are substantially faster than in coarse-grained (CG) copper. A huge influence of environment is observed, with growth rates faster of more than two orders of magnitude in air compared to vacuum. The crack growth mechanisms are discussed on the basis of microfractographic observations and the deformation texture.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

1099-1104

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, E.V. Kozolov, Y.F. Ivanov, J. Lian, A.A. Nazarov and B. Maudelet, Acta. Metall. 42 (1994) 2467.

Google Scholar

[2] H. Mughrabi, H. W. Höppel, Int. J. Fatigue 32 (2010) 1413.

Google Scholar

[3] Y. Estrin, A. Vinogradov, Int. J. Fatigue 32 (2010) 898.

Google Scholar

[4] A. Vinogradov, T. Kawaguchi, Y. Kanek and S. Hashimoto, Mater. Trans. Special issue on Adv. Mater. Sci. in Bulk Nanostructured Metals (2011) The Japan Institute of Metals.

Google Scholar

[5] L. Collini, Eng. Fract. Mech. 77 (2010) 1001.

Google Scholar

[6] A. Vinogradov, J. Mater. Sci. 42 (2007) 1797.

Google Scholar

[7] T. Hanlon, E.D. Tabachnikova and S. Suresh, Int. J. Fatigue 27 (2005) 1147.

Google Scholar

[8] C.S. Chung, J.K. Kim, H.K. Kim, W.J. Kim, Mater. Sci. Eng. A 327 (2002) 39.

Google Scholar

[9] P. S. Pao, R.L. Holtz, H.N. Jones and C.R. Feng, Int. J. Fatigue 31 (2009) 1678.

Google Scholar

[10] W. Elber, Eng. Fract. Mech. 2 (1970) 37.

Google Scholar

[11] S.C. Forth, D.J. Herman, M.A. James, W.M. Johnston, ASTM Special Technical Publication (2005) 124.

Google Scholar

[12] J. Petit, G. Hénaff, C. Sarrazin-Baudoux, Comprehensive Structural Integrity, Vol. 6, Environmentally-assisted Fracture, J. Petit and P. Scott eds., (2003), p.211.

DOI: 10.1016/b0-08-043749-4/06130-9

Google Scholar

[13] I.J. Beyerlein, L.S. Toth, Progress in Mater. Sci. 54 (2009) 427.

Google Scholar

[14] I.J. Beyerlein, S. Li, C.T. Necker, D.J. Alexander, C.N. Tome, Philos. Mag. 85 (2005) 1359.

Google Scholar

[15] T. Niendorf, F. Rubitschek, H.J. Maier, D. Canadinc and I. Karaman, J. Mater. Sci. 45 (2010) 4813.

Google Scholar

[16] K. Hockauf, M. Hockauf, M.F. -X. Wagner, T. Lampke, T. Halle, Mat. -wiss. u. Werkstofftech. 43 (2012) 609.

DOI: 10.1002/mawe.201200008

Google Scholar