Reduction in Fatigue Strength of Arc Welded Aluminium 5083-H111 on Immersion in NaCl

Article Preview

Abstract:

The design of welded aluminium structures subjected to fatigue loading is usually carried out on the basis of reference fatigue curves published in design codes. The reference curves are usually relevant to dynamic loading in ambient air and make provision for the presence of a corrosive environment by downgrading the detail category for a particular joint type. This investigation studied the corrosion-fatigue behaviour of Al 5083-H111 welded using ER5356 wire. Comparison between experimentally determined fatigue curves and reference fatigue design curves published in Eurocode 9 confirms that 5083-H111 welds display significantly lower reference fatigue strengths than unwelded base material. Immersion in a NaCl solution during testing reduced the reference fatigue strengths even further. The reduction in detail category number recommended in Eurocode 9 for aluminium butt welds on immersion in sea water appears suitable (or even marginally conservative) for the 5XXX series Al-Mg-Mn welds examined in this investigation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

1469-1475

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Davis (ed. ), Alloying: Understanding the Basics, ASM International, Metals Park, (1998).

Google Scholar

[2] Aluminum Association Inc., International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, Aluminium Association Inc., Arlington, (2001).

DOI: 10.31399/asm.hb.v02b.a0006624

Google Scholar

[3] D.V. Wilcox, H. Adkins, P.B. Dickerson, E.A. Hasemeyer, L. Lockwood, Welding Aluminum, 6th ed., American Welding Society, Miami, (1972).

Google Scholar

[4] Z.Q. Zheng, B. Cai, T. Zhai, S.C. Li, The behaviour of fatigue crack initiation and propagation in AA2524-T35 alloy, Mat. Sci. Eng. A-Struct. 528(4-5) (2011), 2017-(2022).

DOI: 10.1016/j.msea.2010.10.085

Google Scholar

[5] M. Kumar, B. Guha, Fatigue characteristics of bead-on-plate, welds of aluminum and AlZnMg alloy, Theor. Appl. Fract. Mec. 19(2) (1993) 151-156.

Google Scholar

[6] R.R. Ambriz, G. Barrera, R. García, V.H. López, A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA), Mater. Design 30(7) (2009) 2446-2453.

DOI: 10.1016/j.matdes.2008.10.025

Google Scholar

[7] E.L. Huskins, B. Cao, K.T. Ramesh, Strengthening mechanisms in an Al–Mg alloy, Mat. Sci. Eng. A-Struct. 527(6) (2010) 1292-1298.

DOI: 10.1016/j.msea.2009.11.056

Google Scholar

[8] N. Geoffroy, E. Vittecoq, A. Birr, F. De Mestral, J. -M. Martin, Fatigue behaviour of an arc welded Al–Si–Mg alloy, Scripta Mater. 57(4) (2007) 349-352.

DOI: 10.1016/j.scriptamat.2007.04.024

Google Scholar

[9] T. -L. Teng, C. -P. Fung, P. -H. Chang, Effect of weld geometry and residual stresses on fatigue in butt-welded joints, Int. J. Pres. Ves. Pip. 79(7) (2002) 467-482.

DOI: 10.1016/s0308-0161(02)00060-1

Google Scholar

[10] K.D. Ralston, N. Birbilis, M. Weyland, C.R. Hutchinson, The effect of precipitate size on the yield strength-pitting corrosion correlation in Al-Cu-Mg alloys, Acta Mater. 58(18) (2010) 5941-5948.

DOI: 10.1016/j.actamat.2010.07.010

Google Scholar

[11] S. Ishihara, S. Saka, Z.Y. Nan, T. Goshima, S. Sunada, Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law, Fatigue Fract. Eng.M. 29(6) (2006) 472-480.

DOI: 10.1111/j.1460-2695.2006.01018.x

Google Scholar

[12] S.I. Rokhlin, J. -K. Kim, H. Nagy, B. Zoofan, Effect of pitting corrosion on fatigue crack initiation and fatigue life, Eng. Fract. Mech. 62(4-5) (1999) 425-444.

DOI: 10.1016/s0013-7944(98)00101-5

Google Scholar

[13] R.M. Pidaparti, A.S. Rao, Analysis of pits induced stresses due to metal corrosion, Corros. Sci. 50(7) (2008) 1932-(1938).

DOI: 10.1016/j.corsci.2008.05.003

Google Scholar

[14] R.M. Chlistovsky, P.J. Heffernan, D.L. DuQuesnay, Corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads, Int. J. Fatigue, 29(9-11) (2007) 1941-(1949).

DOI: 10.1016/j.ijfatigue.2007.01.010

Google Scholar

[15] G.S. Chen, K. -C. Wan, M. Gao, R.P. Wei, T.H. Fluornoy, Transition from pitting to fatigue crack growth - Modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy, Mat. Sci. Eng. A-Struct., 219(1-2) (1996) 126-132.

DOI: 10.1016/s0921-5093(96)10414-7

Google Scholar

[16] K. Mutombo, M. du Toit, Corrosion fatigue behavior of 5083-H111 aluminium welded using Gas Metal Arc Welding, in: W. Sudnik (Ed. ), Arc Welding, InTech Open Access Publishing, 2011, pp.177-218.

DOI: 10.5772/25991

Google Scholar

[17] Eurocode 9: Design of aluminium structures - Part 1-3: Structures susceptible to fatigue, EN 1999-1-3: 2007/A1, European Committee for Standardisation, Brussels, (2011).

Google Scholar

[18] AWS A5. 10/A5. 10M: 1999 (R2007), Specification for bare aluminum and aluminum-alloy welding electrodes and rods, American Welding Society, Miami, (2007).

Google Scholar

[19] ASTM E466-07, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM International, West Conshohocken, (2007).

DOI: 10.1520/e0466-96

Google Scholar