[1]
J.R. Davis (ed. ), Alloying: Understanding the Basics, ASM International, Metals Park, (1998).
Google Scholar
[2]
Aluminum Association Inc., International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys, Aluminium Association Inc., Arlington, (2001).
DOI: 10.31399/asm.hb.v02b.a0006624
Google Scholar
[3]
D.V. Wilcox, H. Adkins, P.B. Dickerson, E.A. Hasemeyer, L. Lockwood, Welding Aluminum, 6th ed., American Welding Society, Miami, (1972).
Google Scholar
[4]
Z.Q. Zheng, B. Cai, T. Zhai, S.C. Li, The behaviour of fatigue crack initiation and propagation in AA2524-T35 alloy, Mat. Sci. Eng. A-Struct. 528(4-5) (2011), 2017-(2022).
DOI: 10.1016/j.msea.2010.10.085
Google Scholar
[5]
M. Kumar, B. Guha, Fatigue characteristics of bead-on-plate, welds of aluminum and AlZnMg alloy, Theor. Appl. Fract. Mec. 19(2) (1993) 151-156.
Google Scholar
[6]
R.R. Ambriz, G. Barrera, R. García, V.H. López, A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA), Mater. Design 30(7) (2009) 2446-2453.
DOI: 10.1016/j.matdes.2008.10.025
Google Scholar
[7]
E.L. Huskins, B. Cao, K.T. Ramesh, Strengthening mechanisms in an Al–Mg alloy, Mat. Sci. Eng. A-Struct. 527(6) (2010) 1292-1298.
DOI: 10.1016/j.msea.2009.11.056
Google Scholar
[8]
N. Geoffroy, E. Vittecoq, A. Birr, F. De Mestral, J. -M. Martin, Fatigue behaviour of an arc welded Al–Si–Mg alloy, Scripta Mater. 57(4) (2007) 349-352.
DOI: 10.1016/j.scriptamat.2007.04.024
Google Scholar
[9]
T. -L. Teng, C. -P. Fung, P. -H. Chang, Effect of weld geometry and residual stresses on fatigue in butt-welded joints, Int. J. Pres. Ves. Pip. 79(7) (2002) 467-482.
DOI: 10.1016/s0308-0161(02)00060-1
Google Scholar
[10]
K.D. Ralston, N. Birbilis, M. Weyland, C.R. Hutchinson, The effect of precipitate size on the yield strength-pitting corrosion correlation in Al-Cu-Mg alloys, Acta Mater. 58(18) (2010) 5941-5948.
DOI: 10.1016/j.actamat.2010.07.010
Google Scholar
[11]
S. Ishihara, S. Saka, Z.Y. Nan, T. Goshima, S. Sunada, Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law, Fatigue Fract. Eng.M. 29(6) (2006) 472-480.
DOI: 10.1111/j.1460-2695.2006.01018.x
Google Scholar
[12]
S.I. Rokhlin, J. -K. Kim, H. Nagy, B. Zoofan, Effect of pitting corrosion on fatigue crack initiation and fatigue life, Eng. Fract. Mech. 62(4-5) (1999) 425-444.
DOI: 10.1016/s0013-7944(98)00101-5
Google Scholar
[13]
R.M. Pidaparti, A.S. Rao, Analysis of pits induced stresses due to metal corrosion, Corros. Sci. 50(7) (2008) 1932-(1938).
DOI: 10.1016/j.corsci.2008.05.003
Google Scholar
[14]
R.M. Chlistovsky, P.J. Heffernan, D.L. DuQuesnay, Corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads, Int. J. Fatigue, 29(9-11) (2007) 1941-(1949).
DOI: 10.1016/j.ijfatigue.2007.01.010
Google Scholar
[15]
G.S. Chen, K. -C. Wan, M. Gao, R.P. Wei, T.H. Fluornoy, Transition from pitting to fatigue crack growth - Modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy, Mat. Sci. Eng. A-Struct., 219(1-2) (1996) 126-132.
DOI: 10.1016/s0921-5093(96)10414-7
Google Scholar
[16]
K. Mutombo, M. du Toit, Corrosion fatigue behavior of 5083-H111 aluminium welded using Gas Metal Arc Welding, in: W. Sudnik (Ed. ), Arc Welding, InTech Open Access Publishing, 2011, pp.177-218.
DOI: 10.5772/25991
Google Scholar
[17]
Eurocode 9: Design of aluminium structures - Part 1-3: Structures susceptible to fatigue, EN 1999-1-3: 2007/A1, European Committee for Standardisation, Brussels, (2011).
Google Scholar
[18]
AWS A5. 10/A5. 10M: 1999 (R2007), Specification for bare aluminum and aluminum-alloy welding electrodes and rods, American Welding Society, Miami, (2007).
Google Scholar
[19]
ASTM E466-07, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM International, West Conshohocken, (2007).
DOI: 10.1520/e0466-96
Google Scholar