[1]
I. Bantounas, D. Dye, T.C. Lindley, The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V, Acta Mater. 57 (2009) 3584-3595.
DOI: 10.1016/j.actamat.2009.04.018
Google Scholar
[2]
Z. Sun, R. Karppi, The application of electron beam welding for the joining of dissimilar metals: an overview, J. Mater. Process. Technol. 59 (1996) 257-267.
DOI: 10.1016/0924-0136(95)02150-7
Google Scholar
[3]
J. Kim, Y. Kawamura, Dissimilar welding of Zr41Be23Ti14Cu12Ni10 bulk metallic glass and stainless steel, Scr. Mater. 65 (2011) 1033-1036.
DOI: 10.1016/j.scriptamat.2011.06.032
Google Scholar
[4]
J. Kim, Y. Kawamura, Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal, Scr. Mater. 56 (2007) 709-712.
DOI: 10.1016/j.scriptamat.2006.12.046
Google Scholar
[5]
A.K. Lakshminarayanan, V. Balasubramanian, Comparison of electron beam and friction stir weldments of modified 12wt% ferritic stainless steel, Mater. Manuf. Processes 26 (2011) 868-877.
DOI: 10.1080/10426914.2010.515643
Google Scholar
[6]
K.K. Murthy, S. Sundaresan, Phase transformations in a welded near α titanium alloy as a function of weld cooling rate and post-weld heat treatment conditions, J. Mater. Sci. 33 (1998) 817-826.
Google Scholar
[7]
A.A. Popov, A.G. Illarionov, O.A. Oleneva, Structure and properties of welds of high-alloy titanium alloy after heat treatment, Metal Sci. Heat Treat. 52 (2011) 476-480.
DOI: 10.1007/s11041-010-9303-9
Google Scholar
[8]
M.F. Arenas, V.L. Acoff, The effect of postweld heat treatment on gas tungsten arc welded gamma titanium aluminide, Scr. Mater. 46 (2002) 241-246.
DOI: 10.1016/s1359-6462(01)01232-5
Google Scholar
[9]
Y. Guo, Y.L. Chiu, M.M. Attallah, H.Y. Li, S. Bray, P. Bowen, Characterization of dissimilar linear friction welds of α-β titanium alloys, J. Mater. Eng. Perform. 21 (2012) 770-776.
DOI: 10.1007/s11665-012-0129-z
Google Scholar
[10]
P.F. Fu, F.J. Liu, Z.Y. Mao, J.W. Li, Effects of electron beam local heat treatment on fatigue properties for Ti-6Al-4V alloy joints, Inter. Technol. Innovation Conf. Hangzhou, China (2006) 72-75.
DOI: 10.1049/cp:20060731
Google Scholar
[11]
S.Q. Wang, J.H. Liu, D.L. Chen, Strain-controlled fatigue properties of dissimilar welded joints between Ti-6Al-4V and Ti17 alloys, Mater. Des. 49 (2013) 716-727.
DOI: 10.1016/j.matdes.2013.02.034
Google Scholar
[12]
A.S.H. Kabir, X.J. Cao, J. Gholipour, P. Wanjara, J. Cuddy, A. Birur, M. Medraj, Effect of postweld heat treatment on microstructure, hardness, and tensile properties of laser-welded Ti-6Al-4V, Metall. Mater. Trans. A 43 (2012) 4171-4184.
DOI: 10.1007/s11661-012-1230-5
Google Scholar
[13]
S.J. Li, T.C. Cui, Y.L. Hao, R. Yang, Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation, Acta Biomater. 4 (2008) 305-317.
DOI: 10.1016/j.actbio.2007.09.009
Google Scholar
[14]
J. Plumbridge, M. Stanley, Low cycle fatigue of a titanium 829 alloy, Inter. J. Fatigue 4 (1986) 209-216.
DOI: 10.1016/0142-1123(86)90023-x
Google Scholar
[15]
A.K. Nag, K.V.U. Praveen, V. Singh, Low cycle fatigue behaviour of Ti-6Al-5Zr-0. 5Mo- 0. 25Si alloy at room temperature, Bull. Mater. Sci. 29 (2006) 271-275.
DOI: 10.1007/bf02706496
Google Scholar
[16]
N.G. Singh, V. Singh. Low cycle fatigue behavior of Ti alloy IMI 834 at room temperature. Mater. Sci. Eng. A 325 (2002) 324-332.
DOI: 10.1016/s0921-5093(01)01468-x
Google Scholar