An Overview of the Fatigue of Polychloroprene Rubber

Article Preview

Abstract:

Some fundamental studies carried in a synthetic rubber - Chloroprene CR29 are presented in the first part of the paper. A critical analysis of test results, shows that an energy based approach permits the determination of fatigue lives in this material. This aspect is further enhanced by biaxial fatigue tests in the same material. These tests covering a life range from 10000 to 1000000 cycles show that the energy based model is very efficient to describe the fatigue behavior. Some evidence of strain induced crystallization (previously observed in natural rubber) with associated life enhancement at high load ratios is also presented. A comprehensive model based on the determination of the constitutive laws taking into account the viscoelastic behavior is developed showing excellent correlation with experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

518-523

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.V. Mars et A. Fatemi, A litterature survey on analysis approaches for rubber, Int. J. Fat. 24 (2002), 949 – 969.

Google Scholar

[2] S.M. Cadwell, Dynamic fatigue life of rubber, Ind. Eng. Chem. 12 (1940), 18 – 23.

Google Scholar

[3] J.H. Fielding, Flex life and crystallization of synthetic rubber, Ind. Eng. Chem. 17 (1944), 1020 – 1028.

Google Scholar

[4] N. Saintier, G. Cailletaud, et R. Piques, Multiaxial fatigue life prediction for a natural rubber, Int. J. Fat. 28 (2006), 530 – 539.

DOI: 10.1016/j.ijfatigue.2005.05.011

Google Scholar

[5] A. Bennani, Elaboration, comportement et durée de vie du caoutchouc naturel renforcé de silice, PhD Thesis, Ecole nationale des mines de Paris (2006).

Google Scholar

[6] B.J. Robers et J.B. Benzies, The relationship between uniaxial and equibiaxial fatigue in gum and carbon black filled vulcanizates, Proceeding of Rubbercon'77 2 (1977), 2 – 13.

Google Scholar

[7] H.S. Ro, Modeling and interpretation of fatigue failure initiation in rubber related to pneumatic tires, Ph. D thesis, Purdue university, (1989).

Google Scholar

[8] T. Alshuth, F. Abraham, Parameter dependence and prediction of fatigue properties of elastomer products, Rubber Chem. Technol. 75 (2002) 635-642.

DOI: 10.5254/1.3544990

Google Scholar

[9] W.V. Mars, Multiaxial fatigue of rubber, Ph. D thesis, university of Toledo (USA), (2001).

Google Scholar

[10] A. Zine, N. Benseddiq et M. Nait Abdelaziz, Prediction of rubber fatigue life under multiaxial loading, Fatigue Fract. Engng. Mater. Struct. 29 (2006), 267 – 278.

DOI: 10.1007/1-4020-4972-2_380

Google Scholar

[11] A. Zine, N. Benseddiq et M. Nait Abdelaziz, Rubber fatigue life under multiaxial loading : Numerical and experimental investigations, Int. J. Fat. 33 (2011), 1360 – 1368.

DOI: 10.1016/j.ijfatigue.2011.05.005

Google Scholar

[12] R.J. Harbour, A. Fatemi et W.V. Mars, Fatigue life and predictions for NR and SBR under variable amplitude and multiaxial loading conditions, Int. J. Fat. 30 (2008), 1231 – 1247.

DOI: 10.1016/j.ijfatigue.2007.08.015

Google Scholar

[13] T. Zarrin-Ghalami et A. Fatemi, Multiaxial fatigue and life prediction of elastomeric components, Int. J. Fat. 35 (2013), 92 – 101.

DOI: 10.1016/j.ijfatigue.2013.05.009

Google Scholar

[14] F. Ellyin, A criterion for fatigue under multiaxial states of stress, Mechanics Research Communications 1 (1974) 219-224.

DOI: 10.1016/0093-6413(74)90068-8

Google Scholar

[15] F. Lacroix, S. Meo, G. Berton, F. Chalon, A. Tougui, N. Ranganathan, A local criterion for fatigue crack initiation on chloroprene rubber: approach in dissipation, Taylor & Francis (Eds. ), Constitutive models for rubber IV, London, 2005, pp.77-81.

DOI: 10.1201/9781315140216-13

Google Scholar

[16] S. Toki, T. Fujimaki, M. Okuyama, Strain-induced crystallization of natural rubbers as detected real time by wide-angle X-ray diffraction technique, Polymer 41 (2000) 5423-5429.

DOI: 10.1016/s0032-3861(99)00724-7

Google Scholar

[17] P. Zhang, G. Huang, L. Qu, G. Weng et J. Wu, Strain-induced crystallization behavior of polychloroprene rubber, J. Appl. Sci., 121 (2011) 37 – 42.

DOI: 10.1002/app.33530

Google Scholar

[18] JB Le Cam, B Huneau, E Verron, Fatigue damage in carbon black filled natural rubber under uni- and multiaxial loading conditions, Int. J. Fat. 52 (2013), 82 – 94.

DOI: 10.1016/j.ijfatigue.2013.02.022

Google Scholar

[19] J. -L. Poisson, F. Lacroix, S. Méo, G. Berton, N. Ranganathan, Rubber Fatigue – The Intrinsic Intricacies, in Fatigue of Materials II: Advances and Emergences in Understanding (eds T. S. Srivatsan, M. A. Imam and R. Srinivasan), John Wiley & Sons, Inc., Hoboken, NJ, USA, October (2012).

DOI: 10.1002/9781118533383.ch13

Google Scholar

[20] J.L. Poisson, F. Lacroix, S. Méo, G. Berton and N. Ranganathan, Biaxial fatigue behavior of a polychloroprene rubber, Int. J. Fat. 33 (2011), 1151 – 1157.

DOI: 10.1016/j.ijfatigue.2011.01.014

Google Scholar