Simulation of Surface Crack Initiation Induced by Slip Localization and Point Defect Kinetics

Article Preview

Abstract:

Crack initiation along surface persistent slip bands (PSBs) has been widely observed and modelled. Nevertheless, from our knowledge, no physically-based fracture modelling has been proposed and validated with respect to the numerous recent experimental data showing the strong relationship between extrusion and microcrack initiation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

542-548

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.S. Basinski, S. J. Basinski. Progress in Materials Science, 56 (2011) 725–784.

Google Scholar

[2] M. Sauzay, L.P. Kubin. Progress in Materials Science, 56 (2011) 725–784.

Google Scholar

[3] U. Essmann, U. Gösele, H. Mughrabi. Phil. Mag. A 44 (1981) 405-4026.

Google Scholar

[4] J. Polak. Mater. Sci. Eng. 92 (1987) 71-80.

Google Scholar

[5] J. Polak, M. Sauzay. Mat. Sci. Engineering A 500 (2009) 122-129.

Google Scholar

[6] E.A. Repetto, M. Ortiz. Acta Mater. 45 (1997) 2577-2595.

Google Scholar

[7] J. Man, K. Obrtlik, J. Polak. Phil. Mag. 89 (2009) 1337-1372.

Google Scholar

[8] J. Man, K. Obrtlik, J. Polak. Phil. Mag. 89 (2009) 1295-1336.

Google Scholar

[9] L.M. Brown, S.L. Ogin. In: B.A. Bilby, K.J. Miller, J.R. Willis (Eds. ), Fundamentals in deformation and fracture, Cambridge University Press, Cambridge, 1985, p.501.

Google Scholar

[10] G. Venkataraman, Y. -W. Chung, Y. Nakasone, T. Mura. Acta Metall. Mater. 38 (1990) 31-41.

Google Scholar

[11] M.D. Sangid, H.J. Maier, H. Sehitoglu . Int. J. Plast. 27 (2011) 801-821.

Google Scholar

[12] K Differt, U. Essmann, H. Mughrabi. Phil. Mag. A 54 (1986) 237.

Google Scholar

[13] J. Man, K. Obrtlik, C. Blochwitz, J. Polak. Acta Mater. 50 (2002) 3767 -3780.

Google Scholar

[14] M. Sauzay. Acta. Mater. 55 (2007) 1193-1202.

Google Scholar

[15] A. Steckmeyer, M. Sauzay, A. Weidner, E. Hieckmann. Int. J. Fat. 40 (2012) 154–167.

Google Scholar

[16] H. Mughrabi. Mat. Sci. Eng. 33 (1978) 207-223.

Google Scholar

[17] C. Gorlier. Mécanismes de fatigue plastique de l'acier 316L sous formes monocristalline et polycristalline. Thèse Ecole des Mines de Saint Etienne (1984).

Google Scholar

[18] Z.S. Basinski , S.J. Basinski. Acta Metall. 37 (1989) 3255.

Google Scholar

[19] V. Yamakov, E. Saether, D.R. Phillips, E.H. Glaessgen. J. Mech. Phys. Sol. 54 (2006) 1899.

Google Scholar

[20] O. Nguyen, M. Ortiz. J. Mech. Phys. Sol. 50 (2002) 1727-1741.

Google Scholar

[21] M.C. Inman, D. McLean, H.R. Tipler. Proc. Roy. Soc. A273 (1963) 538-557.

Google Scholar

[22] K. Obrtlik, J. Man, J. Polak. Mat. Sci. Eng. A 234-236 (1997) 727-730.

Google Scholar

[23] M. Risbet, X. Feaugas. Eng. Fract. Mech. 75 (2008) 3511-3519.

Google Scholar

[24] H.S. Ho, M. Risbet, X. Feaugas, J. Favergeon, G. Moulin. Proced. Eng. 2 (2010) 751-757.

Google Scholar

[25] J. Man, T. Vystavel, A. Weidner, I. Kubena, M. Petrenec, T. Kruml, J. Polak. Int. J. Fat. 39 (2002) 44-39.

Google Scholar