[1]
M. Futakawa, K. Haga, T. Wakui, H. Kogawa, T. Naoe, Development of the Hg target in the J-PARC neutron source, Nucl. Instr. Meth. Phys. Res. A. 600 (2009) 18-21.
DOI: 10.1016/j.nima.2008.11.103
Google Scholar
[2]
X. Li, Effects of inclusions on very high cycle fatigue properties of high strength steels, J. Int. Mater. Rev. 57 (2012) 92-110.
DOI: 10.1179/1743280411y.0000000008
Google Scholar
[3]
J. Wu, C. Lin, Effect of strain rate on high-temperature low-cycle fatigue of 17-4 PH stainless steels, J. Mater. Sci. Eng. A. 390 (2005) 291–298.
DOI: 10.1016/j.msea.2004.08.063
Google Scholar
[4]
S. Hong, S. Lee, Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel, J. Nucl. Mater. 340 (2005) 307-314.
DOI: 10.1016/j.jnucmat.2004.12.012
Google Scholar
[5]
L. Mansur, Materials issues in high power accelerators, Nucl. Instr. Meth. Phys. Res. A. 562 (2006) 666–675.
Google Scholar
[6]
T. Naoe, Y. Yamaguchi, M. Futakawa, Quantification of fatigue crack propagation of an austenitic stainless steel in mercury embrittlement, J. Nucl. Mater. 431 (2012) 133–139.
DOI: 10.1016/j.jnucmat.2011.11.026
Google Scholar
[7]
E. Lee, T. Byun, J. Hunn, K. Farrell, L. Mansur, Origin of hardening and deformation mechanisms in irradiated 316 LN austenitic stainless steel, J. Nucl. Mater. 296 (2001) 183-191.
DOI: 10.1016/s0022-3115(01)00566-9
Google Scholar
[8]
H. Tian, P. k. Liaw, J. Strizak, L. Mansur, Effects of mercury on fatigue behavior of Type 316 LN stainless steel: application in the spallation neutron source, J. Nucl. Mater. 318 (2003) 157-166.
DOI: 10.1016/s0022-3115(03)00116-8
Google Scholar
[9]
J.P. Strizak, L.K. Mansur, the effect of mean stress on the fatigue behavior of 316 LN stainless steel in air and mercury, J. Nucl. Mater. 318 (2003) 151-156.
DOI: 10.1016/s0022-3115(03)00121-1
Google Scholar
[10]
J.P. Strizak, H. Tian, P. k. Liaw, L.K. Mansur, Fatigue properties of type 316 stainless steel in air and mercury, J. Nucl. Mater. 343 (2005) 134-144.
DOI: 10.1016/j.jnucmat.2005.03.019
Google Scholar
[11]
K. Salama, R. Lamerand, The prediction of fatigue life using ultrasound testing, Proceedings of the First International Conference on Fatigue And Corrosion Fatigue Up to Ultrasonic Frequencies. (1981) 103-133.
Google Scholar
[12]
D. Wagner, N. Ranc, C. Bathias, P. C. Paris, Fatigue crack initiation detection by an infrared thermography method, Fatigue Fract Engng Mater Struct. (2009)12-21.
DOI: 10.1111/j.1460-2695.2009.01410.x
Google Scholar
[13]
A. Akai, D. Shiozawa, T. Sakagami, Dissipated Energy Evaluation for austenitic stainless steel, Journal of the Society of Materials Science, 62(2013)554-564. In Japanese.
DOI: 10.2472/jsms.62.554
Google Scholar
[14]
Y. Murakami, Metal Fatigue: Effects of small defects and nonmetallic inclusions, first edition, Elsevier Oxford, (2002).
Google Scholar
[15]
K. Kawata, I. Miyamoto, M. Itabashi, S. Sekino, On the Effects of Alloy Components in the High Velocity Tensile Properties, Impact Loading and Dynamic Behavior of Materials. 1 (1988)349-356.
Google Scholar
[16]
H. Mughrabi, Specific features and mechanisms of fatigue in the ultrahigh-cycle regime, In: Proceeding of the Third International Conference on Very High cycle Fatigue. 28 (2006) 1501-1508.
DOI: 10.1016/j.ijfatigue.2005.05.018
Google Scholar