Very High Cycle Fatigue in Pulsed High Power Spallation Neutron Source

Article Preview

Abstract:

Very high cycle fatigue degradation of type 316L austenitic stainless steel, which is used as the structural material of neutron spallation sources under intensive neutron irradiation environment, is investigated by using an ultrasonic fatigue testing machine. The strain rate imposed on the structure of neutron spallation source is almost equivalent to that produced in the testing machine. The temperature on the surface was controlled by the air-cooling. The effect of strain rate on the fatigue strength is recognized to increase the fatigue limit.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 891-892)

Pages:

536-541

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Futakawa, K. Haga, T. Wakui, H. Kogawa, T. Naoe, Development of the Hg target in the J-PARC neutron source, Nucl. Instr. Meth. Phys. Res. A. 600 (2009) 18-21.

DOI: 10.1016/j.nima.2008.11.103

Google Scholar

[2] X. Li, Effects of inclusions on very high cycle fatigue properties of high strength steels, J. Int. Mater. Rev. 57 (2012) 92-110.

DOI: 10.1179/1743280411y.0000000008

Google Scholar

[3] J. Wu, C. Lin, Effect of strain rate on high-temperature low-cycle fatigue of 17-4 PH stainless steels, J. Mater. Sci. Eng. A. 390 (2005) 291–298.

DOI: 10.1016/j.msea.2004.08.063

Google Scholar

[4] S. Hong, S. Lee, Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel, J. Nucl. Mater. 340 (2005) 307-314.

DOI: 10.1016/j.jnucmat.2004.12.012

Google Scholar

[5] L. Mansur, Materials issues in high power accelerators, Nucl. Instr. Meth. Phys. Res. A. 562 (2006) 666–675.

Google Scholar

[6] T. Naoe, Y. Yamaguchi, M. Futakawa, Quantification of fatigue crack propagation of an austenitic stainless steel in mercury embrittlement, J. Nucl. Mater. 431 (2012) 133–139.

DOI: 10.1016/j.jnucmat.2011.11.026

Google Scholar

[7] E. Lee, T. Byun, J. Hunn, K. Farrell, L. Mansur, Origin of hardening and deformation mechanisms in irradiated 316 LN austenitic stainless steel, J. Nucl. Mater. 296 (2001) 183-191.

DOI: 10.1016/s0022-3115(01)00566-9

Google Scholar

[8] H. Tian, P. k. Liaw, J. Strizak, L. Mansur, Effects of mercury on fatigue behavior of Type 316 LN stainless steel: application in the spallation neutron source, J. Nucl. Mater. 318 (2003) 157-166.

DOI: 10.1016/s0022-3115(03)00116-8

Google Scholar

[9] J.P. Strizak, L.K. Mansur, the effect of mean stress on the fatigue behavior of 316 LN stainless steel in air and mercury, J. Nucl. Mater. 318 (2003) 151-156.

DOI: 10.1016/s0022-3115(03)00121-1

Google Scholar

[10] J.P. Strizak, H. Tian, P. k. Liaw, L.K. Mansur, Fatigue properties of type 316 stainless steel in air and mercury, J. Nucl. Mater. 343 (2005) 134-144.

DOI: 10.1016/j.jnucmat.2005.03.019

Google Scholar

[11] K. Salama, R. Lamerand, The prediction of fatigue life using ultrasound testing, Proceedings of the First International Conference on Fatigue And Corrosion Fatigue Up to Ultrasonic Frequencies. (1981) 103-133.

Google Scholar

[12] D. Wagner, N. Ranc, C. Bathias, P. C. Paris, Fatigue crack initiation detection by an infrared thermography method, Fatigue Fract Engng Mater Struct. (2009)12-21.

DOI: 10.1111/j.1460-2695.2009.01410.x

Google Scholar

[13] A. Akai, D. Shiozawa, T. Sakagami, Dissipated Energy Evaluation for austenitic stainless steel, Journal of the Society of Materials Science, 62(2013)554-564. In Japanese.

DOI: 10.2472/jsms.62.554

Google Scholar

[14] Y. Murakami, Metal Fatigue: Effects of small defects and nonmetallic inclusions, first edition, Elsevier Oxford, (2002).

Google Scholar

[15] K. Kawata, I. Miyamoto, M. Itabashi, S. Sekino, On the Effects of Alloy Components in the High Velocity Tensile Properties, Impact Loading and Dynamic Behavior of Materials. 1 (1988)349-356.

Google Scholar

[16] H. Mughrabi, Specific features and mechanisms of fatigue in the ultrahigh-cycle regime, In: Proceeding of the Third International Conference on Very High cycle Fatigue. 28 (2006) 1501-1508.

DOI: 10.1016/j.ijfatigue.2005.05.018

Google Scholar