[1]
H. Mughrabi, Cyclic slip irreversibilities and the evolution of fatigue damage, Metall. Mater. Trans. A 40 (2009) 1257–1279.
DOI: 10.1007/s11661-009-9839-8
Google Scholar
[2]
J. Man, K. Obrtlík, J. Polák, Extrusions and intrusions in fatigued metals. Part 1. State of the art and history, Phil. Mag. 89 (2009) 1295–1336.
DOI: 10.1080/14786430902917616
Google Scholar
[3]
H. Mughrabi, M. Bayerlein, R. Wang, Direct measurement of the rate of extrusion growth in fatigued copper mono- and polycrystals, in: D.G. Brandon, R. Chaim, A. Rosen (Eds. ), Proc. of the Ninth Int. Conf. on Strength of Metals and Alloys (ICSMA 9), Vol. 2, Freund Publishing Comp. Ltd., London, 1991, p.879.
Google Scholar
[4]
J. Man, M. Valtr, A. Weidner, M. Petrenec, K. Obrtlík, J. Polák, AFM study of surface relief evolution in 316L steel fatigued at low and high temperatures, Proc. Eng. 2 (2010) 1625–1633.
DOI: 10.1016/j.proeng.2010.03.175
Google Scholar
[5]
U. Essmann, U. Gösele, H. Mughrabi, A model of extrusions and intrusions in fatigued metals. I. Point-defect production and the growth of extrusions, Phil. Mag. 44 (1981) 405–426.
DOI: 10.1080/01418618108239541
Google Scholar
[6]
J. Polák, On the role of point defects in fatigue crack initiation, Mater Sci. Eng. 92 (1987) 71‒80.
Google Scholar
[7]
J. Polák, M. Sauzay, Growth of extrusions in localized cyclic plastic straining, Mater. Sci. Eng. A 500 (2009) 122–129.
DOI: 10.1016/j.msea.2008.09.022
Google Scholar
[8]
J. Man, P. Klapetek, O. Man, A. Weidner, K. Obrtlík, J. Polák, Extrusions and intrusions in fatigued metals. Part 2. AFM and EBSD study of the early growth of extrusions and intrusions in 316L steel fatigued at room temperature, Phil. Mag. 89 (2009).
DOI: 10.1080/14786430902917624
Google Scholar
[9]
J. Polák, K. Obrtlík, J. Helešic, Cyclic strain localization in polycrystalline copper at room temperature and low temperatures, Mater. Sci. Eng. A 132 (1991) 67–76.
DOI: 10.1016/0921-5093(91)90362-q
Google Scholar
[10]
J. Polák, J. Man, K. Obrtlík, AFM evidence of surface relief formation and models of fatigue crack nucleation, Int. J. Fatigue 25 (2003) 1027–1036.
DOI: 10.1016/s0142-1123(03)00114-2
Google Scholar
[11]
J. Polák, J. Man, Fatigue crack initiation — the role of point defects, Int. J. Fatigue (2013), submitted for publication.
Google Scholar
[12]
J. Polák, J. Man, Mechanisms of extrusion and intrusion formation in fatigued crystalline materials, Mater. Sci. Eng. A (2013), submitted for publication.
Google Scholar