[1]
S.P. Lynch, Mechanisms of hydrogen assisted cracking - A review. In: N.R. Moody, A.W. Thompson, R.E. Ricker, G.W. Was, R.H. Jones, Hydrogen effects on material behaviour and corrosion deformation interactions, TMS, pp.449-466, (2003).
Google Scholar
[2]
H.J. Cialone, J.H. Holbrook, Effects of gaseous hydrogen on fatigue crack growth in pipeline steel, Metallurgical Transactions A, 16A, pp.115-122, (1985).
DOI: 10.1007/bf02656719
Google Scholar
[3]
G.T. Camacho, M. Ortiz, Computational modelling of impact damage in brittle materials, International Journal of Solids and Structures, vol. 33, pp.2899-2938, (1996).
DOI: 10.1016/0020-7683(95)00255-3
Google Scholar
[4]
V. Tvergaard, Effect of fiber debonding in a whisker-reinforced metal, Advances Engineering Materials, vol. 125, pp.203-213, (1990).
DOI: 10.1016/0921-5093(90)90170-8
Google Scholar
[5]
X. Xu, A. Needleman, Void nucleation by inclusion debonding in a crystal matrix, Modelling and Simulation in Materials Science and Engineering, vol. 1, pp.111-132, (1993).
DOI: 10.1088/0965-0393/1/2/001
Google Scholar
[6]
J. Bouvard, J. Chaboche, F. Feyelet, F. Gallerneau, A cohesive zone model for fatigue and creep-fatigue crack growth in single crystal superalloys, International Journal of Fatigue, vol. 31, no. 5, pp.868-879, (2009).
DOI: 10.1016/j.ijfatigue.2008.11.002
Google Scholar
[7]
V. Olden, C. Thaulow, R. Johnsen, Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels, Materials and Design, vol. 29, pp.1934-1948, (2008).
DOI: 10.1016/j.matdes.2008.04.026
Google Scholar
[8]
Z. Sun, G. Benoit, C. Moriconi, F. Hamon, D. Halm, F. Hamon, G. Hénaff, Fatigue crack propagation under gaseous hydrogen in a precipitation-hardened martensitic stainless steel, International Journal of Hydrogen Energy, vol. 36, pp.8641-8644, (2011).
DOI: 10.1016/j.ijhydene.2011.04.094
Google Scholar
[9]
Z. Sun, C. Moriconi, G. Benoit, D. Halm, G. Hénaff, Fatigue crack growth under high pressure of gaseous hydrogen in a 15-5PH martensitic stainless steel: influence of pressure and loading frequency, Metall and Mat Trans A, vol. 44, pp.1320-1330, (2013).
DOI: 10.1007/s11661-012-1133-5
Google Scholar
[10]
S. Serebrinsky, E. Carteret M. Ortiz, A quantum-mechanically informed continuum model of hydrogen embrittlement, Journal of the Mechanics and Physics of Solids, vol. 52, no. 10, pp.2403-2430, (2004).
DOI: 10.1016/j.jmps.2004.02.010
Google Scholar
[11]
V. Olden, C. Thaulowet, R. Johnsen, Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels, Materials & Design, vol. 29, no. 10, pp.1934-1948, (2008).
DOI: 10.1016/j.matdes.2008.04.026
Google Scholar
[12]
K. Roe, T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation, Engineering Fracture Mechanics, vol. 70, no. 2, pp.209-232, (2003).
DOI: 10.1016/s0013-7944(02)00034-6
Google Scholar
[13]
A. Krom, R. Koers, A. Bakker, Hydrogen transport near a blunting crack tip, Journal of the Mechanics and Physics of Solids, vol. 47, no. 4, pp.971-992, (1999).
DOI: 10.1016/s0022-5096(98)00064-7
Google Scholar
[14]
C. Moriconi, Modélisation de la propagation de fissure de fatigue assistée par l'hydrogène gazeux dans les matériaux métalliques,. PhD thesis, ENSMA, (2012).
Google Scholar