Advanced Materials Research
Vol. 898
Vol. 898
Advanced Materials Research
Vol. 897
Vol. 897
Advanced Materials Research
Vol. 896
Vol. 896
Advanced Materials Research
Vol. 895
Vol. 895
Advanced Materials Research
Vol. 894
Vol. 894
Advanced Materials Research
Vol. 893
Vol. 893
Advanced Materials Research
Vols. 891-892
Vols. 891-892
Advanced Materials Research
Vols. 889-890
Vols. 889-890
Advanced Materials Research
Vols. 887-888
Vols. 887-888
Advanced Materials Research
Vol. 886
Vol. 886
Advanced Materials Research
Vols. 884-885
Vols. 884-885
Advanced Materials Research
Vols. 881-883
Vols. 881-883
Advanced Materials Research
Vol. 880
Vol. 880
Advanced Materials Research Vols. 891-892
Paper Title Page
Abstract: This research focuses on high cycle fretting fatigue crack nucleation prediction. A plastic steel/steel cylinder/plane contact was investigated keeping constant the normal force and the maximum fatigue stress ratio but varying the fatigue stress ratio (RF=0.6 to 1). The evolution of the crack length as function of the applied fretting tangential force amplitude at 106 cycles allows us to formalize the crack nucleation condition. It shows that the threshold tangential force marking the crack nucleation (i.e. bp_th=0μm) is not affected by the fatigue stress ratio. However an increase of the fatigue stress amplitude sharply increases the crack extension. To model the experiments, a 2D plastic plain strain FEM modeling is performed. As expected the computed stress field description is mesh dependent. However we demonstrate that a representative stress description is obtained at the 3rd node (i.e. 2nd node below the surface). By coupling this mesh condition and non-local critical distance approach, reliable prediction of the crack nucleation risk can be achieved either considering a Crossland multi-axial fatigue analysis or using a basic uni-axial Haighs description.
903
Abstract: The oxide dispersion strengthened (ODS) steels are widely studied as possible candidate material for fission and fusion technology. Due to application of the ODS materials, mainly low cycle fatigue is important. Therefore, small crack initiation and propagation for rather high stress amplitude are in focus. The main aim of the presented work is description of the small fatigue crack propagation for ODS-EUROFER steel. Due to limited quantity of ODS steel special miniaturized cylindrical specimens for fatigue testing were designed. Crack propagation law based on plastic part of J-integral is presented and applied for mentioned material. The resulting fatigue crack propagation rates for ODS-EUROFER steel and EUROFER 97 are compared and discussed.
911
Abstract: In the present study, fatigue crack propagation (FCP) tests on Mg alloy, AZ61, were performed in 3% NaCl solution. The cathodic potential was controlled to achieve the hydrogen charged condition without anodic dissolution to figure out the effect of hydrogen on FCP behavior. The cathodic potential was set to be-3.0V, which corresponds to the immunity region without corrosion reaction based on Pourbaix diagram of Mg. The FCP rates were accelerated under hydrogen charged condition compared to those in dry air. Magnesium hydrides, MgH2, were not detected along the crack wake in the measurement by X-ray Diffraction (XRD) method, suggesting that the acceleration could be attributed to the diffusion of hydrogen atoms.
917
Abstract: Evaluation of superalloy component life in turbine engines requires a detailed understanding of how fatigue crack initiation and short crack propagation contribute to fatigue life. However most investigations have been carried out post-mortem and in two dimensions. New techniques are able to fully resolve cracks propagating in four dimensions (space and time), enabling characterisation of their local environments and allowing a much deeper understanding of fatigue mechanics.
Nickel-based superalloys experiencing high cycle fatigue have shown a high sensitivity to microstructure during initiation and short crack propagation. Using high energy X-rays and the combination of Diffraction Contrast Tomography (DCT) and Phase Contrast Tomography (PCT), we followed a fatigue crack initiated from a Focused Ion Beam (FIB) milled notch at room temperature. Analyses have been carried out to fully characterise the crack and its environment. We tracked the evolution of the crack and interactions with the microstructure. Subsequently, post-mortem investigations have been carried out to corroborate results obtained from the tomographs and to provide more local information of fatigue crack propagation.
923
Abstract: One problem of the quantitative description of small fatigue crack propagation is the fluctuating crack growth rate induced by obstacles like grain or phase boundaries. Sometimes cracks stop completely for a large number of cycles sometimes cracks only decelerate, both resulting in an additional number of life time cycles. However, so far it is not clear, what actually determines the resistance of a grain boundary against fatigue cracks. Therefore we investigate small crack propagation through grain boundaries systematically by in-situ imaging in the scanning electron microscope and focused ion beam (FIB) crack initiation. By this unique technique, artificial stage I cracks with constant crack parameters can be observed while interacting with different grain boundaries which gives detailed information on the interaction mechanisms. We identified different useful aspects of the interaction between microcracks and microstructural barriers on the microscopic scale. 3D-tomographs revealed by serial sectioning and FIB give information about the transition process from the initial grain to the neighbouring one. The resulting purely geometrical consideration leads to a quantitative description of the blocking effect of grain boundaries and can be used to calculate the probability of a crack transfer from the orientation data of two neighboring grains only.
929
Abstract: Crack propagation experiments under constant stress intensity conditions were performed on SEN specimen of a high-alloyed steel. The experiments were accompanied by thermo elastic stimulated lock-in thermography investigations. The experiments showed that the crack propagation rate decreases with increasing crack length. Concurrent an increase in the dissipated energy in an area beside the crack flanks as well as in front of the crack tip was observed. The size of the plastic zone was also determined by thermographic measurements and was found to be constant during the crack propagation experiment. The increase of the dissipated energy doesnt reflect in the size of the plastic zone but seems to be responsible for the decrease of the crack propagation rate.
936
Abstract: The fatigue crack growth (FCG) from a small hole in a low alloy steel JIS-SCM435 round bar was investigated using tension-compression fatigue tests in 0.7 MPa hydrogen gas and ambient air. In the higher FCG rate regime (e.g. da/dN > 108 m/cycle), FCG was accelerated in hydrogen gas compared to in air. On the other hand, in the lower FCG rate regime (e.g. da/dN < 108 m/cycle), FCG in hydrogen was rather slower than that in air. There was no noticeable difference in fatigue limits between these two atmospheres. The FCG in the respective atmospheres showed a typical small crack behavior, i.e. the da/dN for small cracks were much greater than those for large cracks obtained by compact tension (CT) specimen when they were compared at the same ΔK level. In order to unify such a discrepancy of FCG behavior between small crack and large crack, the strain intensity factor range ΔKε was adopted. As a result, the da/dN data for various crack sizes was gathered in a narrow band, i.e. the small crack effect was successfully evaluated with the strain intensity. Moreover, the crack growth life was predicted based on the da/dN-ΔKε relation. The reproduced S-N curve showed a conservative agreement with the fatigue life obtained by experiments.
942
Abstract: It has often been observed that the growth of short fatigue cracks under variable amplitude (VA) cyclic loading is not well predicted when utilising standard constant amplitude (CA) crack growth rate/stress intensity data (da/dN v DK). This paper outlines a coupon fatigue test program and analyses, investigating a possible cause of crack growth retardation from CA-only testing. Various test loading spectra were developed with sub-blocks of VA and CA cycles, then using quantitative fractography (QF) the sub-block crack growth increments were measured. Comparison of these results found that, after establishing a consistent uniform crack front using a VA load sequence, the average crack growth rate then progressively slowed down with the number of subsequent CA load cycles applied. Further fractographic investigation of the fracture surface at the end of each CA and VA sub-block crack growth, identified significant crack front morphology differences. Thus it is postulated that a variation or deviation from an efficient crack path is a driver of local retardation in short crack growth during CA loading. This may be a source of error in analytical predictions of crack growth under VA spectra loading that may need to be considered in addition to other potential effects such as less closure whilst cracks are small. For aircraft designers, using solely CA data for fatigue life predictions this may result in non-conservative estimates of total crack fatigue life, producing unexpected failures or an increased maintenance burden.
948
Abstract: It is well known that WC-Co cemented carbides have excellent wear resistance. However, information about their fatigue crack growth behavior and fatigue properties is limited. In the present study, rotating bending fatigue tests were carried out on a fine grained WC-Co cemented carbide to evaluate its fatigue lifetime and crack growth behavior. From observations of the micro-notched specimen surface during the fatigue process, it was revealed that most of the fatigue lifetime of the tested WC-Co cemented carbide is comprised of crack growth cycles. Using the basic equation of fracture mechanics, the relation between the rate of fatigue crack growth da/dN and the maximum stress intensity factor Kmax of the WC-Co cemented carbide was derived. From this relation, both the threshold intensity factor Kth and the fatigue fracture toughness Kfc of the material were determined. Fatigue lifetime of the WC-Co cemented carbide was estimated based on the fatigue crack growth law.
955
Abstract: The 15-5PH (precipitation-hardened) martensitic stainless steel is prone to embrittlement following ageing during service at temperatures between 300°C and 350°C. This results in an increase in strength and a decrease in elongation and fracture toughness. However little information is available on the consequences of long term ageing on fatigue crack growth resistance. In the present study this issue is precisely addressed at room temperature and 300°C, with different load ratio under constant amplitude loading and under variable amplitude loading.At room temperature, the results indicate a marginal effect of the load ratio, regardless of ageing conditions and temperature. While the Paris regime is not affected by ageing, a significant drop in the critical stress intensity value before unstable fracture is observed, reflecting a decrease in fracture toughness of the material with ageing. At 300°C, the FCGRs are higher than at room temperature for all ageing conditions. Variable amplitude loading tests carried out on differently-aged materials showed the same retardation effect.
961