Ultra Thin SiNX on a-Si In Situ Hot-Wire CVD by Decomposing NH3 Gas

Article Preview

Abstract:

The fabrication of ultra thin silicon nitride (SiNX) layer (< 2 nm) on amorphous silicon (a-Si) in-situ hot-wire CVD by decomposing ammonia (NH3) gas is reported. Approximately 1.5 nm thin SiNX is formed by nitridation of 40 nm thick a-Si for 10 min at substrate temperature of 250 °C. The amorphous phase of SiNX formed on a-Si and a-Si layer deposited on c-Si wafer is identified by Raman spectroscopy. The formation of ultra thin SiNX by nitridation of a-Si at 250 °C is confirmed by X-ray photoelectron spectroscopy (XPS) depth profile measurement of SiNX/a-Si structured film. The report indicates that the HWCVD method can be used for fabricating superlattice structures consisting of ultra thin SiNX layers (< 2 nm).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

421-426

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Shockley and H. J. Queisser, J. Appl. Phys. Vol. 32 (1961), p.510.

Google Scholar

[2] A. Nozik: Physica E Vol. 14 (2002), p.115.

Google Scholar

[3] G. Conibeer: Materials Today Vol. 10 (2007), p.42.

Google Scholar

[4] B. Abeles: Superlattices Microstruct. Vol. 5 (1989), p.473.

Google Scholar

[5] A. Panchal, D. Rai, M. Mathew and C. Solanki: Nano Vol. 4 (2009), p.265.

Google Scholar

[6] Z. Wan, R. Patterson, S. Huang, M. Green and G. Conibeer: Europhys. Lett. Vol. 95 (2011), p.67006–p.1.

Google Scholar

[7] C. Song, R. Huang, X. Wang, Y. Guo and J. Song, Opt.: Mater. Express Vol. 3 (2013), p.664.

Google Scholar

[8] D. Rai, N. Mavilla, A. Panchal and C. Solanki: Proc. 38th IEEE PVSC (2012), p.810.

Google Scholar

[9] A. Panchal, D. Rai, M. Mathew and C. Solanki: J. Nanopart. Res. Vol. 13 (2011), p.2469.

Google Scholar

[10] A. Panchal and C. Solanki: J. Cryst. Growth Vol. 311 (2009), p.2659.

Google Scholar

[11] T. -Y. Kim, N. -M. Park, C. -J. Choi, C. Huh, C. -G. Ahn, G. Y. Sung, I. -K. You and M. Suemitsu: Jpn. J. Appl. Phys. Vol. 50 (2011), p. 04DG11–1.

Google Scholar

[12] S. M. Sze and K. K. Ng: Physics of semiconductor devices (John Wiley & Sons, Inc., 2007).

Google Scholar

[13] P. Alpuim, L. Goncalves, E. Marins, T. Viseu, S. Ferdov and J. Bouree: Thin Solid Films Vol. 517 (2009), p.3503.

DOI: 10.1016/j.tsf.2009.01.077

Google Scholar

[14] A. Mahan: Sol. Energy Mater. Sol. Cells Vol. 78 (2003), p.299–327.

Google Scholar

[15] R. Karcher, L. Ley and R. L. Johnson: Phys. Rev. B: Condens. Matter Vol. 30 (1984), p.1896.

Google Scholar

[16] A. Ermolie_, P. Bernard, S. Marthon and J. C. da Costa: J. Appl. Phys. Vol. 60 (1986), p.3162.

Google Scholar

[17] S. Naskar, S. D. Wolter, C. A. Bower, B. R. Stoner and J. T. Glass: Appl. Phys. Lett. Vol. 87 (2005), 261907.

Google Scholar

[18] S. Ishidzuka, Y. Igari, T. Takaoka and I. Kusunoki: Appl. Surf. Sci. Vol. 130 (1998), p.107.

Google Scholar

[19] H. Inao and A. Izumi: Phys. Status Solidi C Vol. 9 (2012), p.1415.

Google Scholar

[20] O. Renner and J. Zemek: Czech. J. Phys. B Vol. 23 (1973), p.1273.

Google Scholar