Growth and Characterization of ZnS Films by Chemical Bath Deposition

Article Preview

Abstract:

ZnS films are formed by chemical bath deposition using variety zinc sources such as zinc acetate (Zn (CH3COO)2), zinc sulfate (ZnSO4), zinc nitrate (Zn (NO3)2), iodide zinc (ZnI2), zinc chloride (ZnCl2) and zinc acetyl (Zn (acac)2). X-ray diffraction results show all broad spectra of ZnS. It is considered that amorphous ZnS can be grown. All samples show high transmittance. It is deduced that the decrease of transmittance around 3.7 eV is due to the ZnS band gap. Scanning electron microscopy shows that grain size becomes large with decreasing the instability constants of the zinc sources. It is assumed that zinc becomes ionization with decreasing the instability constants. All samples show a signal of O-H bond from fourier transform infrared spectra. It is assumed that the Zn (OH)2 exists in each sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

416-420

Citation:

Online since:

February 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Elidrissi, M. Addou, M. Regragui, A. Bougrine, A. Kachouane, J. C. Bernede, Mater. Chem. Phys. 68, 175 (2001).

Google Scholar

[2] T. Nakada, M. Mizutani, Jpn. J. Appl. Phys. 41, L165 (2002).

Google Scholar

[3] R. N. Bhattacharya, M. A. Contreras, G. Teeter, Jpn. J. Appl. Phys. 43, L1475 (2004).

Google Scholar

[4] A. Ennaoui, Can. J. Phys. 77, 723 (1999).

Google Scholar

[5] A. Ennaoui, S. Siebentritt, M. C. Lux-Steiner, W. Riedl, F. Karg, Sol. Energy Mater. Sol. Cells 67, 31 (2001).

Google Scholar

[6] A. Ennaoui, W. Eisele, M. C. Lux-Steiner, T. P. Niesen, F. Karg, Thin Solid Films 431–432, 335 (2003).

DOI: 10.1016/s0040-6090(03)00155-x

Google Scholar

[7] K. Kushiya, M. Ohshita, I. Hara, Y. Tanaka, B. Sang, Y. Nagoya, M. Tachiyuki, D. Yamase, Sol. Energy Mater. Sol. Cells 75, 171 (2003).

DOI: 10.1016/s0927-0248(02)00144-7

Google Scholar

[8] S. D. Han, I. Singh, D. Singh, Y. H. Lee, G. Sharma, C. H. Han, J. Lum. 115, 97 (2005).

Google Scholar

[9] P. K. Shon, J.H. Shin, G. C. Kim, S. N. Lee, J. Lum. 132, 1764 (2012).

Google Scholar

[10] D. Adachi, K. Takei, T. Toyama, H. Okamoto, Appl. Surf. Sci. 254, 299 (2007).

Google Scholar

[11] G. Sharma, S. D. Han, J. D. Kim, S. P. Khatkar, Y. W. Rhee, Mater. Sci. Eng. B 131, 271 (2006).

Google Scholar

[12] M. Bar, A. Ennaoui, J. Klaer, T. Kropp, R. Sáez-Araoz, N. Allsop, I. Lauermann, H. -W. Schock and M. C. L. Steiner, J. Appl. Phys. 99, 123503 (2006).

DOI: 10.1063/1.2202694

Google Scholar

[13] H. H. Afifi, S. A. Mahmoud, A. Ashour, Thin Solid Films 263, 248 (1995).

Google Scholar

[14] T. Maruyama, T. Kawaguchi, Thin Solid Films 188, 323 (1990).

Google Scholar

[15] P.J. Dean, A. D. Pitt, M.S. Skolnick, P. J. Wright, B. Cockayne, J. Crystal Growth 59, 301 (1982).

Google Scholar

[16] J. C. Sanchez-Lopez, E. P. Reddy, T. C. Rojas, M. J. Sayagues, A. Justo, A. Femandez, Nano Struc. Mater. 12, 459 (1999).

Google Scholar

[17] M. E. Rincon, M.W. Martınez, M. Miranda-Hernandez, Sol. Energy Mater. Sol. Cells 77, 25 (2003).

Google Scholar

[18] K. Ernits, K. Muska, M. Danilson, J. Raudoja, T. Varema, O. Volobujeva, M. Altosaar, Advan Mater. Sci. Eng. 2009, 5 (2009).

DOI: 10.1155/2009/372708

Google Scholar

[19] N. Kamoun Allouche, T. Ben Nasr, N. Turki Kamoun, C. Guasch, Mater. Chem. Phys. 123, 620 (2010).

DOI: 10.1016/j.matchemphys.2010.05.026

Google Scholar

[20] U. Gangopadhyay, K. Kim, D. Mangalaraj, J. Yi Appl. Surf. Sci. 230, 364 (2004).

Google Scholar

[21] A. Pudov, J. Sites, T Nakada, Jpn. J. Appl. Phys. 41, L672 (2002).

Google Scholar

[22] R. Vacassy, S. M. Scholz, J. Dutta, C. J. G. Plummer, R. Houriet, H. Hofmann, J. Am. Ceram. Soc. 81, 2699 (1998).

Google Scholar

[23] A. U. Ubale, V. S. Sangawar, D. K. Kulkarni, Bull. Mater. Sci. 30, 147 (2007).

Google Scholar

[24] J. Vidal, O. Vigil, O. de Melo, N. Loapez, O. Zelaya Angel, Mater. Chem. Phys. 61, 139 (1999).

Google Scholar

[25] T. Yamaguchia, Y. Yamamoto. T. Tanaka, A. Yoshida, Thin Solid Films 343-344, 516 (1999).

Google Scholar

[26] C. M. Huang, L. C. Chen, G. T. Pan, T. C. K. Yang, W. S. Chang, K. W. Cheng, Mater. Chem. Phys. 117, 156 (2009).

Google Scholar

[27] K. Kushiya, T. Nii, I. Sugiyama, Y. Sato, Y. Inamori, H. Takeshita, Jpn. J. Appl. Phys. 35, 4383 (1996).

Google Scholar

[28] N. Kamoun, T. Ben Nasr, N. Turki Kamoun, C. Guasch, Mater. Chem. Phys. 123, 620 (2010).

DOI: 10.1016/j.matchemphys.2010.05.026

Google Scholar

[29] R. N. Bhattacharya, K. Ramanathan, L. Gedvilas, B. Keyes, J. Phys. Chem. Solids 66, 1862 (2005).

Google Scholar

[30] R. Vacassy, S. M. Scholz, J Dutta, C. J. G. Plummer, R. Houriet, H. Hofmann, J. Am. Ceram. Soc., 81, 2699 (1998).

Google Scholar