[1]
Slamet, H.W. Nasution, E. Purnama, S. Kosela, J. Gunlazuardi, Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method, Catal. Commun. 6 (2005) 313-319.
DOI: 10.1016/j.catcom.2005.01.011
Google Scholar
[2]
W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, J. Ding, W. Zhang, X. Zhou, H. Zhao, Y. Li, Synthesis and photocatalytic activity of Fe-doped TiO2 supported on hollow glass, Nano-Micro Lett. 3 (2011) 20-24.
DOI: 10.1007/bf03353647
Google Scholar
[3]
Z. Peng-Jun, W. Rong, H. Juan, C. Ai-Min, G. Fang, Z. Bo, One-step self-assembled of Cu-TiO2 Heterogeneous Nanoparticles Using a Soft Template. J. Inorg. Mater. 27 (2012) 1003-1008.
Google Scholar
[4]
K. Kocí, K. Mateju, L. Obalová, S. Krejcíková, Z. Lacný, D. Plachá, L. Capek, A. Hospodková, O. Solcová, Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal. B-Environ. 96 (2010) 239-244.
DOI: 10.1016/j.apcatb.2010.02.030
Google Scholar
[5]
K. Adachi, K. Ohta, T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Sol. Energy, 53 (1994) 187-190.
DOI: 10.1016/0038-092x(94)90480-4
Google Scholar
[6]
T. Mizuno, H. Tsutsumi, K. Ohta, A. Saji, H. Noda, Photocatalytic reduction of CO2 with dispersed TiO2/Cu powder mixtures in supercrtitical CO2. Chem. Lett. 23 (1994) 1533-1536.
DOI: 10.1246/cl.1994.1533
Google Scholar
[7]
I.H. Tseng, W. -C. Chang, J.C.S. Wu, Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts, Appl. Catal. B-Environ. 37 (2002) 37-48.
DOI: 10.1016/s0926-3373(01)00322-8
Google Scholar
[8]
Q. -H. Zhang, W. -D. Han, Y. -J. Hong, J. -G. Yu, Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today, 148 (2009) 335-340.
DOI: 10.1016/j.cattod.2009.07.081
Google Scholar
[9]
X. -H. Xia, Z. -J. Jia, Y. Yu, Y. Liang, Z. Wang, L. -L. Ma, Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon. 45 (2007) 717-721.
DOI: 10.1016/j.carbon.2006.11.028
Google Scholar
[10]
R. -D. Sun, A. Nakajima, T. Watanabe, K. Decomposition of gas-phase octamethyltrisiloxane on TiO2 thin film photocatalysts-catalytic activity, deactivation, and regeneration. Photochem. Photobiol. A-Chem. 154 (2003) 203-209.
DOI: 10.1016/s1010-6030(02)00322-2
Google Scholar
[11]
Y. Hao, R. Liu, X. Meng, H. Cheng, F. Zhao, Deactivation of Au/TiO2 catalyst in the hydrogenation of o-chloronitrobenzene in the presence of CO2. Molecular Catal. A- Chem. 335 (2011) 183-188.
DOI: 10.1016/j.molcata.2010.11.029
Google Scholar
[12]
J. Lichtenberger, M. D. Amiridis, Deactivation of V2O5/TiO2 catalysts during the oxidation of meta-dichlorobenzene in the presence of methyl-naphthalene. Catal. Today, 98 (2004) 447-453.
DOI: 10.1016/j.cattod.2004.08.001
Google Scholar
[13]
N. González-Garcı́a, J.A. Ayllón, X. Doménech, J. Peral, TiO2 deactivation during the gas-phase photocatalytic oxidation of dimethyl sulfide. Appl. Catal. B-Environ. 52 (2004) 69-77.
DOI: 10.1016/j.apcatb.2004.03.016
Google Scholar
[14]
S. -Z. Chen, P. -Y. Zhang, W. -P. Zhu, L. Chen, S. -M. Xu, Deactivation of TiO2 photocatalytic films loaded on aluminium: XPS and AFM analyses. Appl. Surf. Sci. 252 (2006) 7532-7538.
DOI: 10.1016/j.apsusc.2005.09.023
Google Scholar
[15]
O. Zuas, J. Gunlazuardi, W. Wibowo, Y.K. Krisnandi, and J.S. Kim, Characterizations of ternary Cu-Zn-Ti oxide nanocomposites and their photocatalytic activity evaluation for CO2 reduction: submitted to Journal of Materials Research (2013).
Google Scholar
[16]
C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, first ed., USA, USA (1979).
Google Scholar
[17]
M. K. Jeon, J. W. Park, M. Kang, Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase and rutile forms of Cu-TiO2. J. Ind. Eng. Chem. 13 (2007) 84-91.
Google Scholar
[18]
Y. Ku, Y. -H. Huang, Y. -C. Chou, Preparation and characterization of ZnO/TiO2 for the photocatalytic reduction of Cr(VI) in aqueous solution. J. Mol. Catal. A-Chem. 342-343 (2011) 18-22.
DOI: 10.1016/j.molcata.2011.04.003
Google Scholar
[19]
L.S. Dake, D.R. Baer, J.M. Zachara, Auger parameter measurements of zinc compounds relevant to zinc transport in the environment. Surf. Interface Anal. 14 (1989) 71-75.
DOI: 10.1002/sia.740140115
Google Scholar
[20]
E. De la Rosa, S. Sepalveda-Guzman, B. Reeja-Jayan, A. Torres, P. Salas, N. Elizondo, M.J. Yacaman, Controlling the growth and luminescence properties of well-faceted ZnO nanorods. J. Physic. Chem. C, 111 (2007) 8489-8495.
DOI: 10.1021/jp071846t
Google Scholar
[21]
G. J. Yang, C. J. Li, F. Han, X. C. Huang, Effects of annealing treatment on microstructure and photocatalytic performance of nanostructured TiO2 coatings through flame spraying with liquid feedstocks. J. Vac. Sci. Technol. 22 (2004) 2364-2368.
DOI: 10.1116/1.1788679
Google Scholar
[22]
C. M. Liu, X. P. Li, X. T. Zu, Microstructure and Photoluminescence of Carbon and Nitrogen Dual doped TiO2 Powders. Chinese J. Phys. 47 (2009) 207-214.
Google Scholar
[23]
Y. Li, D. -S. Hwang, N. H. Lee, S. -J. Kim, Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chem. Phys. Lett. 404 (2005) 25-29.
DOI: 10.1016/j.cplett.2005.01.062
Google Scholar
[24]
I. -C. Kang, Q. Zhang, S. Yin, T. Sato, F. Saito, Novel method for preparation of high visible active N-doped TiO2 photocatalyst with its grinding in solvent. Appl. Catal. B-Environ. 84 (2008) 570-576.
DOI: 10.1016/j.apcatb.2008.05.017
Google Scholar