The Influence of Mn/Ga Solution Mole Fraction on the Solid Composition and Microstructure of GaN:Mn Thin Film Deposited on Silicon Substrate by Spin Coating Technique

Article Preview

Abstract:

The influence of Mn/Ga solution on the characteristics of solid composition and microstructure of GaN:Mn thin film was studied. GaN:Mn thin films were deposited on Si (111) substrate by the Chemical Solution Deposition (CSD) method using the spin coating technique. Variations of the Mn/Ga mole fraction were 4%, 6%, 8%, and 10% respectively. The GaN:Mn thin films were then heated at a temperature of 900°C for 2 hours in an N2 environment with a constant flow rate of 120 sccm. Atomic composition, crystal structure, and surface morphology of GaN:Mn thin films were characterized using X-Ray Diffraction (XRD), Energy Dispersive of X-ray (EDX), and Scanning Electron Microscope (SEM). EDX results showed that the larger the Mn/Ga mole fraction solution, the higher the Mn At percentage is. The correlation of At Mn percentage and Mn/Ga solution mole fraction is represented by the formula y = 0.023x3 - 0.352x2 - 1.742x -2.81. All of the GaN:Mn thin films still have nitrogen vacancy, carbon impurity and maintain the wurtzite polycrystalline structure. Lattice parameter a, which is in the range of 3.2077Å – 3.2621Å, and lattice parameter c, which is in the range of 5.1094Å – 5.3038Å, depend on Mn atomic percentage of the film. The Root Mean Square (RMS) of GaN:Mn thin film surface roughness is in the range of 15.3nm – 29.90nm. The grain size for the 6% Mn/Ga mole fraction thin film is homogeneous.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-210

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Zorpette, The Quest of Spin Transistor, IEEE Spectrum. 38 (2001) 30-35.

Google Scholar

[2] D.D. Awschalom, D. Loss, N. Samarth, Semiconductor Spintronics and Quantum Computation, Springer-Verlag Berlin, (2002).

Google Scholar

[3] G.T. Thaler, Development of Gallium Nitride Based DMS For Magneto-optical Applications, Doctoral Dissertation, University of Florida, 2004, pp.39-41.

Google Scholar

[4] M.L. Reed, M.J. Reed, M.O. Luen, E.A. Berkman, F.E. Arkun, S.M. Bedair, J.M. Zavada, N.A. El-Masry, Magnetic Properties of Mn-doped GaN and p-i-n Junctions, Phy. Status Solidi (c), 2, 7, (2005) 2403–2406.

DOI: 10.1002/pssc.200461517

Google Scholar

[5] H. Ohno, Making Nonmagnetic Semiconductors Ferromagnetic, Sci. (1998) 951-956.

Google Scholar

[6] A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, N.Y. Pashkova, J. Kim, F. Ren, M.E. Overberg, G.T. Thaler, C.R. Abernathy, S.J. Pearton, R.G. Wilson, Electrical and Optical Properties of GaN Films Implanted with Mn and Co, J. Applied Physics, 92, 6, (2002).

DOI: 10.1063/1.1499977

Google Scholar

[7] M.L. Reed, M.K. Ritums, H.H. Stadelmaier, M.J. Reed, C.A. Parker, S.M. Bedair, N.A. El-Masry, Room Temperature Magnetic Ga, Mn N: A New Material for Spin Electronic Devices, Mat. Letters, 51, (2001) 500–503.

DOI: 10.1016/s0167-577x(01)00342-1

Google Scholar

[8] U. Kim, H. K. Seong, M.H. Kim, H. J. Choi, Fabrication of GaN/GaN: Mn core/shell nanowires and their photoluminescences, Mater Let 63 (2009) 97–99.

DOI: 10.1016/j.matlet.2008.09.025

Google Scholar

[9] R. Vidyasagar Y. -T. Lin, L. -W. Tu, Spectroscopic and magnetic properties of Mn doped GaN epitaxial films grown by plasma assisted molecular beam epitaxy, Mater Res Bul 47 (2012) 4467–4471.

DOI: 10.1016/j.materresbull.2012.09.050

Google Scholar

[10] C. Liu, F. Yun, H. Morkoc, Ferromagnetism of ZnO and GaN: A Review, Department of Electrical Engineering and Physics Department, Virginia Commonwealth University, (2005).

Google Scholar

[11] B. Mulyanti, Growth and Characterization of Ferromagnetic Semiconduktor GaN: Mn Thin Films Using Plasma Assisted Metalorganic Chemical Vapor Deposition (PA-MOCVD) Method, Doctoral Dissertation, ITB, Indonesia, 2007, pp.23-26.

Google Scholar

[12] T. Fumiyoshi, O. Hironori, L. JeungWoo, T. Koki, A. Hiro, Growth and Characterization of Mn-doped Cubic-GaN, Physica B, 376-377, (2006), 658-662.

DOI: 10.1016/j.physb.2005.12.166

Google Scholar

[13] K.H. Kim, K.J. Lee, H.S. Kang, F.C. Yu, J.A. Kim, D.J. Kim, K. H Baik, S.H. Yoo, C.G. Kim, Y.S. Kim, C.S. Kim, H.J. Kim, Y.E. Ihm, Molecular Beam Epitaxial Growth of GaN and GaMnN Using a Single Precursor, Phy. Status Solidi (b), 241, 7, (2004).

DOI: 10.1002/pssb.200304556

Google Scholar

[14] S.J. Pearton, M.E. Overberg, G.T. Thaler, C.R. Abernathy, N. Theodoropoulou, A.F. Hebard, S.N.G. Chu, R.G. Wilson, J.M. Zavada, A.Y. Polyakov, A.V. Osinsky, P.E. Norris, P.P. Chow, A.M. Wowchack, J.M. Van Hove, Y.D. Park, Characterization of High Dose Mn, Fe, and Ni implantation into p-GaN, J. Vac. Sci. Technology A, 20, 3, (2002).

DOI: 10.1116/1.1465449

Google Scholar

[15] K. Sardar et al, Epitaxial GaN films deposited on sapphire substrates prepared by the sol–gel method, Solid State Communications 125 (2003) 355–358.

DOI: 10.1016/s0038-1098(02)00810-4

Google Scholar

[16] G. Bernard, Group III Nitride Semiconductor Compounds, Clarendon Press, OXFORD: New York, (1998).

Google Scholar

[17] C. Suryanarayana, M.G. Norton, X-Ray Diffraction: A Practical Approach, Plenum Press : New York and London, (1998).

Google Scholar