Characteristics of Mg-Ca-Zn Alloy Metallic Foam Based on Mg-Zn-CaH2 System

Article Preview

Abstract:

Mg-Ca-Zn alloy metallic foam has been recently recognized as biodegradable implant. In this present work, the characteristics of Mg-Ca-Zn alloy metallic foam which made by foaming of powder compact based on Mg-Zn-CaH2 system were investigated. Mg-Zn-CaH2 powder with nominal compositions of 97.5 weight % Mg, 2 weight % Zn, 0.5 weight % CaH2 and 96.8 weight % Mg, 2 weight % Zn, 1.2 weight % CaH2 were prepared by dry milling process for 6 h and characterized by differential thermal analysis (DTA). The prepared powders are pressed for 6.5MPa at room temperature and sintered for 2 h at various temperatures of 350 °C and 600 °C. The alloys were analyzed by x-ray diffraction and scanning electron microscope (SEM). The results indicated that addition of calcium hydride as blowing agent affects phase formation of Mg2Ca and Mg2Zn3, sintering temperature and grain refining of Mg-Ca-Zn alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-271

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Witte, F., Ulrich, H., Rudert, M., Willbold, E., Biodegradable Magnesium Scaffolds: part 1: Appropriate Inflammatory Response.: J Biomed Mater Res A, 2007, 81.

DOI: 10.1002/jbm.a.31170

Google Scholar

[3] 748–56.

Google Scholar

[2] Benli, S., Aksoy, S., Havitcioglu, H., Kucuk, M., Evaluation Of Bone Plate With Low Stiffness Material In Terms Of Stress Distribution.: J. Biomech, 2008, 41, 3229–3235.

DOI: 10.1016/j.jbiomech.2008.08.003

Google Scholar

[3] Rubin, H., Magnesium: The Missing Element In Molecular Views Of Cell Proliferation Control.: BioEssays, 2005, 27.

DOI: 10.1002/bies.20183

Google Scholar

[3] 311–20.

Google Scholar

[4] Rubin, H., Degrees and Kinds of Selection in Spontaneous Neoplastic Transformation: An Operational Analysis.: Proc Natl Acad Sci USA, 2005, 102.

DOI: 10.1073/pnas.0503688102

Google Scholar

[26] 9276–81.

Google Scholar

[5] Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K, U., Willumeit, R., Feyerabend, F., Degradable Biomaterials Based on Magnesium Corrosion.: Current Opinion in Solid State and Materials Science, 2008, 12, 63–72.

DOI: 10.1016/j.cossms.2009.04.001

Google Scholar

[6] Romani, A., Scarpa, A., Regulation of Cell Magnesium.: Arch Biochem Biophys, 1992, 298.

Google Scholar

[1] 1–12.

Google Scholar

[7] Speich, M., Bousquet, B., Nicolas, G., Reference Values for Ionized, Complexed, and Protein-Bound Plasma Magnesium in Men and Women.: Clin Chem, 1981, 27.

DOI: 10.1093/clinchem/27.2.246

Google Scholar

[2] 246–8.

Google Scholar

[8] Renkema, K,Y., Alexander, R, T., Bindels, R, J., Hoenderop, J, G., Calcium and Phosphate Homeostasis: Concerted Interplay of New Regulators.: Ann Med, 2008, 40.

DOI: 10.1080/07853890701689645

Google Scholar

[2] 82–91.

Google Scholar

[9] Johnson, J, R., Riechmann, G, C., Normal Serum Calcium Levels by Atomic Absorption Spectroscopy.: Clin Chem, 1968, 14.

Google Scholar

[12] 1218–25.

Google Scholar

[10] Rosenberg, K., Olsson, H., Morgelin, M., Heinegard, D., Cartilage Oligomeric Matrix Protein Shows High Affinity Zinc-Dependent Interaction with Triple Helical Collagen.: J Biol Chem, 1998, 273.

DOI: 10.1074/jbc.273.32.20397

Google Scholar

[32] 20397–403.

Google Scholar

[11] Kiilerich, S., Christensen, M, S., Naestoft, J., Christiansen, C., Determination Of Zinc In Serum And Urine By Atomic Absorption Spectrophotometry: Relationship Between Serum Levels Of Zinc And Proteins In 104 Normal Subjects.: Clin Chim Acta, 1980, 105.

DOI: 10.1016/0009-8981(80)90465-9

Google Scholar

[2] 231–9.

Google Scholar

[12] Vormann, J., Magnesium: Nutrition and Metabolism.: Mol Aspects Med, 2003, 24, 27–37.

Google Scholar

[13] Food and Nutrition Board IoM. Dietary Reference intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington DC., National Academies Press, 1997, 190–249.

DOI: 10.17226/5776

Google Scholar

[14] Food and Nutrition Board Iom. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC., National Academies Press, 2001, 442–501.

DOI: 10.17226/10026

Google Scholar

[15] Hamid, R., Bakhsheshi, Rad., Mohd, Hasbullah, Idris., M., Rafiq, A. K., Saeed, F., Microstructure Analysis and Corrosion Behavior of Biodegradable Mg–Ca Implant Alloys.: Materials and Design, 2012, 33, 88–97.

DOI: 10.1016/j.matdes.2011.06.057

Google Scholar

[16] Oh-ishi, K., Watanabe, R., Mendis, C, L., Hono, K., Age-Hardening Response of Mg– 0. 3 at. %Ca Alloys with Different Zn Contents.: Mater Sci Eng, 2009, 526, 177–84.

DOI: 10.1016/j.msea.2009.07.027

Google Scholar

[17] A. Haibel., A. Rack., and J. Banhart., Why Are Metal Foam Stable?.: Applied Physic Letters, 2006, 89, 154102.

DOI: 10.1063/1.2357931

Google Scholar

[18] T. Zhou., M. Yang., Z. Zhou., J. Hu., Z. Chen., Microstructure and Mechanical Properties of Rapidly Solidified/Powder Metallurgy Mg-6Zn and Mg-6Zn-5Ca at Room Temperature and Elevated Temperature.: Journal of Alloys and Compounds, 2013, 560, 161-166.

DOI: 10.1016/j.jallcom.2013.01.066

Google Scholar

[19] Y. Sun., B. Zhang., Y. Wang., L. Geng., X. Jiao., Preparation and Characterization of a New Biomedical Mg-Zn-Ca Alloy.: Materials and Design, 2012, 34, 58-64.

DOI: 10.1016/j.matdes.2011.07.058

Google Scholar

[20] Li, H-X., Ren, Y-P., Ma, Q-Q., Jiang, M., Qin, G-W., Ternary Coumpounds and Solid State Phase Equilibria in Mg-Rich Side of Mg-Zn-Ca System at 300 °C: Trans. Nonferrous Met. Soc. China, 2011, 21, 2147-2153.

DOI: 10.1016/s1003-6326(11)60987-4

Google Scholar