Modeling of Drain Current in Armchair Graphene Nanoribbon Field Effect Transistor Using Transfer Matrix Method

Article Preview

Abstract:

Drain current in an armchair graphene nanoribbon field effect transistor (AGNRFET) has been quantum mechanically modeled. The transfer matrix method (TMM) was employed to obtain the electron transmittance, and the obtained transmittance was then utilized to calculate the drain current by using the Landauer formula. The calculated results showed that the drain current increases with the gate and drain voltages. It was also shown that the threshold voltage for the device is around 0.3 V. In addition, the AGNR width influences the drain current of AGNRFET.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

367-370

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] D. Jena, T. Fang, Q. Zhang, H. Xing, Zener tunneling in semiconducting nanotube and graphene nanoribbon p−n junctions, Appl. Phys. Lett. 93 (2008) 112106-1-112106-3.

DOI: 10.1063/1.2983744

Google Scholar

[3] W. Yansen, M. Abdullah, Khairurrijal, Application of Airy function approach to model electron tunneling in graphene nanoribbon-based P-N junction diodes, Jurnal Nanosains & Nanoteknologi 3 (2010) 18–21.

Google Scholar

[4] H. Raza, E.C. Kan, Armchair graphene nanoribbons: Electronic structure and electric field modulation, Phys. Rev. B 77 (2008) 245434-1-245434-5.

DOI: 10.1103/physrevb.77.245434

Google Scholar

[5] J. Fernandez-Rossier, J.J. Palacios, L. Brey, Electronic structure of gated graphene and graphene ribbons, Phys. Rev. B 75 (2007) 205441-1-205441-8.

DOI: 10.1103/physrevb.75.205441

Google Scholar

[6] N.M.R. Peres, A.H. Castro Neto, F. Guinea, Conductance quantization in mesoscopic graphene, Phys. Rev. B 73 (2006) 195411-1-195411-8.

DOI: 10.1103/physrevb.73.239902

Google Scholar

[7] F. Munoz-Rojas, D. Jacob, J. Fernandez-Rossier, J.J. Palacios, Coherent transport in graphene nanoconstrictions, Phys. Rev. B 74 (2006) 195417-1-195417-8.

DOI: 10.1103/physrevb.74.195417

Google Scholar

[8] L. Brey, H.A. Fertig, Electronic states of graphene nanoribbons, Phys. Rev. B 73 (2006) 235411-1-235411-5.

Google Scholar

[9] Y.W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97 (2006) 216803-1-216803-4.

DOI: 10.1103/physrevlett.98.089901

Google Scholar

[10] Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zhang, J. Wu, B.L. Gu, F. Liu, W. Duan, Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping, Nano Lett. 7 (2007) 1469–1473.

DOI: 10.1021/nl070133j

Google Scholar

[11] X. Liang, Z. Fu, S.Y. Chou, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer, Nano Lett. 7 (2007) 3840–3844.

DOI: 10.1021/nl072566s

Google Scholar

[12] I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, K.L. Shepard, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol. 3 (2008) 654-659.

DOI: 10.1038/nnano.2008.268

Google Scholar

[13] X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, W.A. de Heer, The epitaxial-graphene/graphene-oxide junction, an essential step towards epitaxial graphene electronics, Phys. Rev. Lett. 101 (2008) 026801-1-02681-4.

DOI: 10.1103/physrevlett.101.026801

Google Scholar

[14] B. Oyilmaz, P. Jarillo-Herrero, D. Efetov, D.A. Abanin, L.S., Levitov, P. Kim, Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions, Phys. Rev. Lett. 99 (2007) 166804-1-166804-4.

DOI: 10.1103/physrevlett.99.166804

Google Scholar

[15] F. Schwierz, Graphene transistor, Nat. Nanotechnol. 5 (2010) 487–496.

Google Scholar

[16] D. Jimenez, A current-voltage model for Schottky-barriergraphene based transistors, Nanotechnology, 19 (2008) 345204-1-345204-4.

DOI: 10.1088/0957-4484/19/34/345204

Google Scholar

[17] A. Kargar, Analytical modeling of current in graphene nanoribbon field effect transistors, IEEE-NANO 2009, 9th IEEE Conference on Nanotechnology (2009) 710–712.

Google Scholar

[18] W.Z. Shangguan, X. Zhou, S.B. Chiah, G.H. See, K. Chandrasekaran, Compact gate-current model based on transfer-matrix method, J. Appl. Phys. 97 (2005) 123709-1-123709-4.

DOI: 10.1063/1.1929885

Google Scholar

[19] E. Suhendi, R. Syariati, F.A. Noor, N. Kurniasih, Khairurrijal, Model of a Tunneling Current in a p-n Junction Based on Armchair Graphene Nanoribbons – an Airy Function Approach and a Transfer Matrix Method, submitted to American Institute of Physics (AIP) Conference Proceedings (2013).

DOI: 10.1063/1.4868757

Google Scholar