High Strain Rate Superplasticity and Microstructure Evolution in a Coarse-Grained Mg-Gd-Y-Zr Rolled Sheet

Article Preview

Abstract:

Superplasticity at high deformation rates is desirable in order to make superplastic forming more practical. High strain rate superplastic behavior and microstructure of the rolled Mg-Gd-Y-Zr alloy sheet were investigated. For the purposes, tensile tests at the strain rate of 0.01 s-1 were conducted, which revealed that the sheet exhibited elongations of 180%~266%. Post-deforming microstructures were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy, while crystallographic orientation information was obtained from macro-texture analysis. The results show that the high strain rate superplasticity was attributed to class-I creep accommodated by dynamic recrystallization. It is suggested from microstructural analysis results that the interaction between second phases and dislocation facilitated dynamic recrystallization. The macro-texture at the strain of 0.8 still exhibited some characteristics of the crystal rotation arising from dislocation slip despite the occurrence of DRX.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

719-724

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Luo: Int. Mater. Rev. Vol. 49 (2004) p.13.

Google Scholar

[2] Y. Xiao, X.M. Zhang, B.X. Chen and Z.Z. Deng: Trans. Nonferrous Met. . Soc. Vol. 16 (2006) p.1169.

Google Scholar

[3] J.J. Blandin: Mater. Sci. Forum. Vol. 551-552 (2007) p.211.

Google Scholar

[4] X. Zhang, L. Li, Y. Deng and N. Zhou: J. Alloys Compd. Vol. 481 (2009) p.296.

Google Scholar

[5] L. Li, X. Zhang, Y. Deng and C. Tang: J. Alloys Compd. Vol. 485 (2009) p.295.

Google Scholar

[6] X. Yang, H. Miura and T. Sakai: Mater. Trans. Vol. 44 (2003) p.197.

Google Scholar

[7] X. Wu and Y. Liu: Scr. Mater. Vol. 46 (2002) p.269.

Google Scholar

[8] H.J. Frost and M.F. Ashby, Deformation mechanism maps, (Pergamon, Tarrytown, 1982).

Google Scholar

[9] H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe and K. Higashi: Mater. Trans. Vol. 40 (1999) p.809.

Google Scholar

[10] J.C. Tan and M.J. Tan: Mater. Sci. Eng. A. Vol. 339 (2003) p.124.

Google Scholar

[11] L. Jiang, G. Huang, S. Godet, J.J. Jonas and A.A. Luo: Mater. Sci. Forum. Vol. 488-489 (2005) p.261.

Google Scholar

[12] F.J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, (Pergamon, London, 2004).

Google Scholar

[13] S.E. Ion, F.J. Humphreys and S.H. White: Acta Metall. Vol. 30 (1982) p. (1909).

Google Scholar

[14] T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa and K. Higashi: Mater. Sci. Eng. A. Vol. 290 (2000) p.139.

Google Scholar

[15] H. Watanabe and M. Fukusumi: Mater. Sci. Eng. A. Vol. 477 (2008) p.153.

Google Scholar

[16] J.B. Lee, T.J. Konno and H.G. Jeong: Mater. Sci. Eng. B. Vol. 161 (2009) p.166.

Google Scholar

[17] J.A. Del Valle, M.T. Pérez-Prado and O.A. Ruano: Metall. Mater. Trans. A. Vol. 36 (2005) p.1427.

Google Scholar

[18] S.B. Yi, S. Zaefferer and H.G. Brokmeier: Mater. Sci. Eng. A. Vol. 424 (2006) p.275.

Google Scholar

[19] C.F. Martin, J.J. Blandin and L. Salvo: Mater. Sci. Eng. A. Vol. 297 (2001) p.212.

Google Scholar