Surface Effects on the Buckling of Nanowires Based on Modified Core-Shell Model

Article Preview

Abstract:

In this work, surface effects including surface elasticity and residual surface stress on the buckling of nanowires are theoretically investigated. Based on modified core-shell (MC-S) model, the effective elasticity incorporating surface elasticity effect of the nanowire is derived, and by using the generalized Young-Laplace equation the residual surface stress is accounted for. The ratio of critical load with and without surface effects are obtained for a nanowire loaded in uniaxial compression. Taking silver (Ag) nanowires as an example, the analyzed results demonstrate that the influence of surface effects on the critical load of buckling becomes more and more significant as the nanowire diameter decreases. Moreover, it is shown that the influence of residual surface stress on the critical load is more prominent than that of surface elasticity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. San Paulo, J. Bokor, R. T. Howe, R. He, P. Yang, D. Gao, C. Carraro and R. Maboudian: Appl. Phys. Lett. Vol. 87 (2005), p.053111.

DOI: 10.1063/1.2008364

Google Scholar

[2] G. Feng, W. D. Nix, Y. Yoon and C. J. Lee: J. Appl. Phys. Vol. 99 (2006), p.074304.

Google Scholar

[3] C. Q. Chen and J. Zhu: Appl. Phys. Lett. Vol. 90 (2007), p.043105.

Google Scholar

[4] S. J. Young, L. W. Ji, S. J. Chang, T. H. Fang, T. J. Hsueh, T. H. Meen and I. C. Chen: Nanotechnology Vol. 18 (2007), p.225603.

Google Scholar

[5] L. W. Ji, S. J. Young, T. H. Fang and C. H. Liu: Appl. Phys. Lett. Vol. 90 (2007), p.033109.

Google Scholar

[6] M. Riaz, O. Nur, M. Willander and P. Klason: Appl. Phys. Lett. Vol. 92 (2008), p.103118.

DOI: 10.1063/1.2911729

Google Scholar

[7] G. Y. Jing, H. L. Duan, X. M. Sun, Z. S. Zhang, J. Xu, Y. D. Li, J. X. Wang and D. P. Yu: Phys. Rev. B Vol. 73 (2006), p.235409.

Google Scholar

[8] Y. Zhu, F. Xu, Q. Qin, W. Y. Fung and W. Lu: Nano Lett. Vol. 9 (2009), p.3934.

Google Scholar

[9] H. Sadeghian, C. K. Yang, J. F. L. Goosen, E. van der Drift, A. Bossche, P. J. French and F. van Keulen: Appl. Phys. Lett. Vol. 94 (2009), p.221903.

DOI: 10.1063/1.3148774

Google Scholar

[10] C. Q. Chen, Y. Shi, J. Zhu and Y. J. Yan: Phys. Rev. Lett. Vol. 96 (2006), p.075505.

Google Scholar

[11] M. E. Gurtin, J. Weissmüller and F. Larché: Philos. Mag. A Vol. 78 (1998), p.1093.

Google Scholar

[12] G. F. Wang and X. Q. Feng: Appl. Phys. Lett. Vol. 94(2009), p.141913.

Google Scholar

[13] G. F. Wang and X. Q. Feng: J. Phys. D: Appl. Phys. Vol. 42 (2009), p.155411.

Google Scholar

[14] Z. Yan and L. Y. Jiang: Nanotechnology Vol. 22 (2011), p.245703.

Google Scholar

[15] H. S. Park: Computational Materials Science Vol. 51 (2012), p.369.

Google Scholar

[16] J. He and C. M. Lilley: Nano Lett. Vol. 8 (2008), p.1798.

Google Scholar

[17] H. Y. Yao, G. H. Yun, N. S. Bai and J. G. Li: J. Appl. Phys. Vol. 111 (2012), p.083506.

Google Scholar

[18] H. Y. Yao and G. H. Yun: Physica E Vol. 44 (2012), p. (1916).

Google Scholar

[19] T. Chen, M. S. Chiu and C. N. Weng: J. Appl. Phys. Vol. 100(2006), p.074308.

Google Scholar