Preparation and Wide Tunable Band-Gap Energies of PbTe Nanocrystals Using Glycerin as a Capping Ligand

Article Preview

Abstract:

PbTe nanocrystals (NCs) have been synthesized by a novel method at low temperature. Pb acetate being solved in glycerol and Te in TOP solution were used as the precursors for the preparation of PbTe nanocrystals. The as-prepared products were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), UVvis absorption, Fourier transform infrared spectroscopy (FTIR). These data, together with analysis of the absorption spectra, allowed us to observe the size dependence of the peaks in the absorption spectrum. The size-dependent optical spectra of the PbTe nanocrystals exhibits wide tunable band gap energies varying from UV visible range to near IR region, which corresponds to a huge blue shift of 3.0 eV in comparison to the bulk counterpart. Keywords: 1. PbTe nanocrystals, 2. optical properties, 3. wide tunable band gap, 4. microstructure

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-85

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. S. Nolas, J. Poon, M. G. Kanatzidis, Mater. Res. Bull. 31, (2006) 199-205.

Google Scholar

[2] Z. H. Dughaish, Physica B 332, (2002) 205-223.

Google Scholar

[3] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E. H. Sargent, Nature 442, (2006) 180-183.

DOI: 10.1038/nature04855

Google Scholar

[4] F. Felder, A. Fognini, M. Rahim, M. Fill, E. Müller, H. Zogg, Physics Procedia 3 (2010) 1121-1125.

DOI: 10.1016/j.phpro.2010.01.149

Google Scholar

[5] P. R. Emtage, J. Appl. Phys. 47, (1976) 2565-2568.

Google Scholar

[6] U. A. Indika, G. K. Mercouri, Nano Lett. 9, (2009) 1583-1587.

Google Scholar

[7] S. Guruswamy, J. Mater. Sci. Lett. 17, (1998) 1145-1147.

Google Scholar

[8] V. C. S. Reynoso, A. M. Depaula, R. F. Cuevas, J. A. M. Neto, O. L. Alves, C. L. Cesar, L. C. Barbosa, Electron. Lett. 31, (1995) 1013-1015.

Google Scholar

[9] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115, (1993) 8706-8715.

Google Scholar

[10] B. Wan, C. Hu, Y. Xi, J. Xu, X. He, Solid State Sciences 12, (2010) 123-127.

Google Scholar

[11] Y. Y. Wang, K. F. Cai, X. Yao, J Solid State Chem 182, 3383-3386 (2009).

Google Scholar

[12] F. W. Wise, Acc. Chem. Res. 33, (2000) 773-780.

Google Scholar

[13] Moreels, K. Lambert, D. D. Muynck, F. Vanhaecke, D. Poelman, J. C. Martins, G. Allan, Z. Hens, Chem. Mater. 9, (2007) 6101-6106.

DOI: 10.1021/cm071410q

Google Scholar