Feature Recognition of Corrosion Pit for Pre-Corroded AA 2524 and Statistical Analysis

Article Preview

Abstract:

Corrosion morphology image is one of the most important features for the evaluation of the corrosion damage of materials. By using white light confocal profiler, the corrosion morphologies of AA2524 aluminum alloy specimen are obtained after full immersion to experimental 3.5% salt solution for different time. Through digital image processing, typical corrosion morphology characteristics are extracted, such as the fractal dimension, the depth of pit, the area of pit. By extended 3D box-dimension method, the fractal dimensions of the corrosion surface under immersing time of 24 and 120 hours are determined. The statistical analyses show that the corrosion areas and the characterization parameters ab/2c2 obey Gumma distribution, and the corrosion depth obeys Gumbel, normal, Weibul and log-normal distributions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

263-267

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. J. Carl, Analysis of fatigue, fatigue-crack propagation and fracture data. NASA CR-132 332. (1973).

Google Scholar

[2] J. Schijve, Fatigue of structures and materials in the 20th Century and the state of the art, Int. J. Fatigue. 25 (2003) 679-702.

DOI: 10.1016/s0142-1123(03)00051-3

Google Scholar

[3] J. R. Davis, Corrosion-Understanding the basis, Ohio: ASM Intl. Materials Park (1998).

Google Scholar

[4] E.N. Codaro, R.Z. Nakazato, An image analysis study of pit formation on Ti_/6Al_/4V , Mater. Sci. Eng. A. 341 (2003) 202-210.

DOI: 10.1016/s0921-5093(02)00218-6

Google Scholar

[5] C.A. Apostolopoulos, Chloride-induced corrosion of steel reinforcement-Mechanical performance and pit depth analysis, Constr. Build. Mater. 38 (2013) 139-146.

DOI: 10.1016/j.conbuildmat.2012.07.087

Google Scholar

[6] K. K. Sankaran, R. Perez and K.V. Jata, Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: modeling and experimental studies, Mater. Sci. Eng. A. 297 (2001) 223-229.

DOI: 10.1016/s0921-5093(00)01216-8

Google Scholar

[7] J. W. J. Silva, A. G. Ramana, E. N. Cadaro, R. Z. Nakazato, L. R. O. Hein, Morphological analysis of pits formed on AL2024-T3 in chloride aqueous solution, Appl. Surface Sci. 236 (2004) 356-65.

DOI: 10.1016/j.apsusc.2004.05.007

Google Scholar

[8] R. M. Pidaparti, B. S. Aghazadeh, Classification of corrosion defects in NiAl bronze through image analysis, Corros. Sci. 52 (2010) 3661–3666.

DOI: 10.1016/j.corsci.2010.07.017

Google Scholar

[9] D. F. Zhang, Distribution rule of corrosion damage morphology parameters for aluminum alloy 2B06, Struc. Environ. Eng. 38 (2011) 57-62.

Google Scholar

[10] J. L. Hu, Analysis of corrosion damage and fatigue life based on corrosion image, ACTA Aeron Astron Sinica. 31 (2010) 131-135.

Google Scholar

[11] M. G. D. G utierrez-Padilla, A. Bielefeldt, S. Ovtchinnikovb, J. Pellegrinoa, J. Silversteina, Simple scanner-based image analysis for corrosion testing , J. Mater. Proc. Techn. 209(2009) 51-7.

Google Scholar

[12] B. B. MANDELBROT, The Fractal Geometry of Nature, New York. Freeman. (1982).

Google Scholar