The Extrusion Behavior of Mg Alloys Interpenetrating with Stainless Steel Wire

Article Preview

Abstract:

The interpenetrating magnesium composites reinforced by three-dimensional braided stainless steel wire reinforcement were fabricated. And, the deformation behavior of materials was analyzed in four extrusion velocities by DEFORM-3D software. The results show that with the increases of extrusion velocities, the equivalent stress values exhibit a gradually increasing and then decreasing trend. Owing to the effect of three dimensional reinforcement, the basal plane orientation occur tilt. And, the microstructure turns refined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

289-292

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.R. Wang, L.H. Song, S. Kang, Deformation behavior and microstructure evolution of wrought magnesium alloys, Chin. J. Mech. Eng-En. 26 (2013) 437-447.

DOI: 10.3901/cjme.2013.03.437

Google Scholar

[2] M. Fletcher, A. Siebert-Timmer, L. Bichler, D. Sediako, Evolution of Strain and Microstructure During Creep of Wrought AE42 and ZE10 Magnesium Alloys, T. Indian. I. Metals. 66 (2013) 133 -140.

DOI: 10.1007/s12666-012-0200-3

Google Scholar

[3] A.A. Luo, Anil K. Sachdev, Development of a New Wrought Magnesium-Aluminum-Manganese Alloy AM30, Metall. Mater. Trans. A 38 (2007) 1184 -1192.

DOI: 10.1007/s11661-007-9129-2

Google Scholar

[4] X. L. Zhang, G. Chen, Y. L. Du, Synthesis of Plastic Mg-Based Bulk-Metallic-Glass Matrix Composites by Bridgman Solidification, Metall. Mater. Trans. A 43 (2012) 2604 -2609.

DOI: 10.1007/s11661-012-1107-7

Google Scholar

[5] R. A. Varin: Intermetallic-reinforced light-metal matrix in-situ composites, Metall. Mater. Trans. A 33 (2002) 193-201.

DOI: 10.1007/s11661-002-0018-4

Google Scholar

[6] S.R. Wang, P.Q. Guo, L.Y. Yang , Y.J. Wang, Microstructure and mechanical properties of AZ91 alloys by addition of rare earth yttrium, J. Materi. Eng. Perform. 18 (2009) 137-144.

DOI: 10.1007/s11665-008-9255-z

Google Scholar

[7] S.R. Wang, Y. Wang, C.C. Li, Q. Chi, Z.Y. Fei, The dry sliding wear behavior of interpenetrating titanium trialuminide /Aluminium composites, Appl. Compos. Meater. 14 (2007) 129-144.

DOI: 10.1007/s10443-007-9036-0

Google Scholar

[8] S.R. Wang, S.B. Kang, J.H. Cho, Y.J. Wang, Microstructure evolution of ZK60 magnesium alloy at CC/TRC/TRCHC processing following by annealing, T. Nonferr. Metal. Soc. 20 (2010) 763-768.

Google Scholar

[9] S.R. Wang, M. Wang, R. Ma, Y. Wang, Y.J. Wang, Microstructure and hot compression behavior of twin-roll-casting AZ41M magnesium alloy, Rare. Metals. 29 (2010) 396-400.

DOI: 10.1007/s12598-010-0137-9

Google Scholar

[10] S.R. Wang, P.Q. Guo L.Y. Yang, Deformation Behavior and Failure Analysis of Wrought Magnesium During Twin Rolling Casting and Hot Compression, J. Eng. Mater. Technol. 134 (2012) 041002.

DOI: 10.1115/1.4004489

Google Scholar

[11] R. Ma, S.R. Wang, Y. Wang, L.Y. Yang, Microstructure evolution of ZK60M twin-roll-casted magnesium alloy during hot compression and annealing, Adv. Mater. Res. 284-286 (2011) 1502-1505.

DOI: 10.4028/www.scientific.net/amr.284-286.1502

Google Scholar

[12] S.R. Wang, L.Y. Yang, R. Ma, P.Q. Guo, Fracture failure analysis of twin rolling casting magnesium by hot compression, Adv. Mater. Res. 123-125 (2010) 547-550.

DOI: 10.4028/www.scientific.net/amr.123-125.547

Google Scholar