Processing Effect on the Compressive Strength and Bioactivity of Ti-Based Composites Produced with TiH2 and Calcium Phosphate

Article Preview

Abstract:

Titanium-based composites with bioactive phases were produced with TiH2 and 10% in volume of calcium phosphate. The mixtures were prepared either by conventional powder metallurgy processing or by ultrasound, dried in a rotary evaporator, pressed at 600 MPa and vacuum-sintered at 1200 °C for 2 hours. Crystal phases of the as-fabricated composites are found to be α-Ti, CaTiO3 and TixPy phase (s). The TixPy and CaTiO3 phases resulted from the reaction between titanium and tricalcium phosphate at about 1130 °C. Calcium phosphate was better dispersed by ultrasound leading to a higher compressive strength of the composite and a more uniform Ca-P deposition in simulated body fluid solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Cheng, S.G. Roscoe, Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins, Biomaterials 26 (2005) 7350–7356.

DOI: 10.1016/j.biomaterials.2005.05.047

Google Scholar

[2] A. Bignon, Optimisation de la structure poreuse d´implants en phosphate de calcium pour application de complement osseux et relargage in situ d´un principe actif. Ph.D. Thesis, Institut National des Sciences Appliquées de Lyon, France, (2002).

Google Scholar

[3] M. Jarcho, Calcium phosphate ceramics as hard tissue prosthetics, Clin. Orthop. Relat. Res. 157 (1981) 259–278.

DOI: 10.1097/00003086-198106000-00037

Google Scholar

[4] S. Nath, R. Tripathi, B. Basu, Understanding phase stability, microstructure development and biocompatibility in calcium phosphate–titania composites, synthesized from hydroxyapatite and titanium powder mixtures, Mater. Sci. Eng. C29 (2009).

DOI: 10.1016/j.msec.2008.05.019

Google Scholar

[5] T.M. Marcelo, V. Livramento, M.V. de Oliveira, M.H. Carvalho, Microstructural characterization and interactions in Ti-and TiH2-hydroxyapatite vacuum sintered composites, Mater. Res. 6 (2006) 65–71.

DOI: 10.1590/s1516-14392006000100013

Google Scholar

[6] C.Q. Ning, Y. Zhou, On the microstructure of biocomposites sintered from Ti, HA and bioactive glass, Biomaterials 25 (2004) 3379–3387.

DOI: 10.1016/j.biomaterials.2003.10.017

Google Scholar

[7] M. Karanjai, R. Sundaresan, G.V.N. Rao, T.R.R. Mohan, B.P. Kashyap, Development of titanium based biocomposite by powder metallurgy processing with in situ forming of Ca-P phases, Mater. Sci. Eng. A447 (2007) 19-26.

DOI: 10.1016/j.msea.2006.10.154

Google Scholar

[8] C.X. Resende, J. Dille, G.M. Platt, I.N. Bastos, G.D. Soares, Characterization of coating produced on titanium surface by a designed solution containing calcium and phosphate ions, Mater. Chem. Phys. 109 (2008) 429-35.

DOI: 10.1016/j.matchemphys.2007.12.011

Google Scholar

[9] V. Bhosle, E.G. Baburaj, M. Miranova, K. Salama, Dehydrogenation of TiH2, Mater. Sci. Eng. A356 (2003) 190–199.

DOI: 10.1016/s0921-5093(03)00117-5

Google Scholar

[10] M. Martin, C. Gommel, C. Borkhart, E. Fromm, Absorsion and desorption kinetics of hydrogen storage alloys, J. Alloys Compd. 238 (1996)193–201.

DOI: 10.1016/0925-8388(96)02217-7

Google Scholar

[11] V. N Fokin, Y.I. Malov, E.E. Fokina, S.L. Trottskaya, S.P. Shilkin, Investigation of interactions in the TiH2-O2 system, Int. J. Hydrogen Energy 20 (1995) 387–389.

DOI: 10.1016/0360-3199(94)00075-b

Google Scholar

[12] G.M.L. Dalmônico, Síntese e caracterização de fosfato de cálcio e hidroxiapatita: Elaboração de composições bifásicas HA/TCP para aplicações biomédicas. Ph.D. Dissertation, State University of Santa Catarina, Joinville, Brazil, (2009).

Google Scholar

[13] S. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterization and thermal stability of powders, Biomaterials 23 (2002) 1065–1072.

DOI: 10.1016/s0142-9612(01)00218-6

Google Scholar

[14] E. Gemelli, C.X. Resende, G.D. De Almeida Soares, Nucleation and growth of octacalcium phosphate on treated titanium by immersion in a simplified simulated body fluid, J. Mater. Sci. Mater. Med. 21 (2010) 2035-(2047).

DOI: 10.1007/s10856-010-4074-9

Google Scholar