Potentials of Pulse Magnetic Forming and Joining

Article Preview

Abstract:

Magnetic pulse production methods such as forming, joining or separating demonstrate innovative high-speed processes. Such processes can be realized using a capacitor and an appropriate tool coil for forming and welding processes. The process strain rates, which can amount to 20,000 s-1, increase the formability of metallic materials significantly. Magnesium and aluminium alloys find a wider application in the automotive industry due to their light weight potential. Through the low density of these materials, the vehicle weight can be reduced considerably. Due to the hexagonal lattice of magnesium alloys industry-relevant deformation in metal forming processes can only be achieved in hot forming processes. The high-speed forming allows a significant increase of deformability of this alloy. The use of dissimilar metals in an assembly requires the development of innovative joining methods. Apart from being used form and force closure the magnetic pulse welding and adhesive bonding material with different partners is possible. Currently at the Institute for Machine Tools and Factory Management (IWF), TU Berlin, various research topics in the field of pulsed magnetic are investigated. The magnetic pulse sheet metal forming of magnesium alloys at room temperature is investigated in a basic research project. A defined demarcation of high-speed forming with respect to the quasi-static deformation is done by means of hardness measurements in the deformation zone. For this purpose a suitable experimental setup with different matrices is constructed. The experimental results of the pulse magnetic deformation are iteratively compared with simulation results. The aim is to develop a new material model which gives a precise prediction about the high-speed process. In the field of magnetic pulse welding, both basic research and industry-related research projects conducted at the IWF. The process requires an adapted tool coil geometry that meets the requirements of the weld geometry. Different coil geometries and weld geometries and possible applications are presented by way of example, the welding quality is quantified by means of different analytical methods. The material microstructure in the weld zone, characterized by light and scanning electron microscopy shows the typical features of a shock welded joint, as also observed in explosive welding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-364

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kopp, Gundolf; Beeh, Elmar: MAGNESIUM MACHT´S MÖGLICH - Super Light CarLeichtbau durch Multi-Material-Design mit integrierten Funktionen,. In: DLR - Nachrichten, Edition121, 2008, p.28 – 31.

Google Scholar

[2] Zittel, R.: A Historical Review of High Speed Metal Forming,. Proceedings of 4th international conference on high speed forming, 2010, Columbus, pp.2-15.

Google Scholar

[3] Shribman, V.: Magnetic Pulse Welding for Dissimilar and Similar Materials,. Proceedings of 3rd international conference on high speed forming, 2008, Dortmund, pp.13-22.

Google Scholar

[4] Stiemer, M.; Unger, J.; Blum, H.; Svendsen, B.: Fast Algorithms for the Simulation of Electromagnetic Metal Forming,. Proceedings of 3rd international conference on high speed forming, 2008, Dortmund, pp.129-140.

Google Scholar

[5] Bartels, G.; Schätzing, W.; Scheibe, H. -P.; Leone, M.: Simulation Models of the Electromagnetic Forming Process,. 2nd Euro-Asian Pulsed Power Conference, 2008, Vilnius, pp.1128-1129.

Google Scholar

[6] Schätzing, W.; Scheibe, H. -P.; Wollenberg, G.: Berechnung des magnetischen Druckes bei der Magnetumformung". Tagungsband zum Kolloquium "Elektromagnetische Umformung, 2001, pp.33-38.

Google Scholar

[7] Uhlmann, E.; Ziefle, A.: Lösungsansätze zur Darstellung des impulsmagnetischen Schweißprozesses mittels gekoppelter FEM-Simulation,. Proceedings of Berliner Runde, 2009, pp.13-22.

Google Scholar

[8] Haiping, Y.U.; Chufeng, L.I.; Jianghua, D.E.N.G.: Sequential coupling simulation for electromagnetic-mechanical tube compression by finite element analyse,. Journal of Material Processing Technology, 2008, Vol. 209, pp.707-713.

DOI: 10.1016/j.jmatprotec.2008.02.061

Google Scholar

[9] Haiping, Y.U.; Chufeng, L.I.: Effects of current frequency on electromagnetic tube compression,. Journal of Material Processing Technology, 2009, Vol. 209, pp.1053-1059.

DOI: 10.1016/j.jmatprotec.2008.03.011

Google Scholar

[10] Bartels, G.; Schätzing, W.; Scheibe, H. -P.; Leone, M.: Models for Electromagnetic Metal Forming,. Proceedings of the 3rd International Conference on High Speed Forming, Dortmund, 2008, pp.121-128.

Google Scholar

[11] Demir, O.K.; Psyk, V.; Tekkaya, A.E.: Simulation of tube wrinkling in electromagnetic compression,. Prod. Eng. Res. Devel., 2010, Vol. 4, pp.421-426.

DOI: 10.1007/s11740-010-0243-4

Google Scholar

[12] Askeland, D.R.: Materialwissenschaften, Spektrum Verlag, Berlin, (1996).

Google Scholar

[13] Bach, F.W.; Behrens, B.A.; Rodmann, M.; Roßberg, A.; Vogt, O.; Huinink, T.: Werkstoff- und Verfahrenstechnische Entwicklung von wirk-medienbasierten Umformprozessen für Magnesiumbleche,. In: Final report DFG Schwerpunktprogramm SPP 1098 - Bericht aus der Fertigungstechnik, 2006, p.115.

Google Scholar

[14] Doege, E.: Umformverhalten von Magnesiumblechen,. In: Neuere Entwicklungen in der Blechumformung, International Conference. Frankfurt a. M.: MATINFO Werkstoff-Informationsgesellschaft, (2000), p.387 – 410.

Google Scholar

[15] Pircher, H.; Weber, M.; Kawalla, R.: Magnesiumbleche für den Karosseriebau,. In: SFU, Sächsische Fachtagung Umformtechnik, Proceedings 9, p.221 – 231.

Google Scholar

[16] Viehweger, B.; Richter, G.; Düring, M.; Karabet, A.; Sviridov, A.; Hartmann, H.; Richter. U.: Hydromechanisches Tiefziehen und Hochdruckumformung als Verfahren zur Herstellung komplexer Bauteile aus Magnesiumblechen des Typs AZ31B-0, Materialwissenschaften und Werkstofftechnik, Edition 35, Book 7, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, (2004).

DOI: 10.1002/mawe.200400763

Google Scholar

[17] Viehweger, B.; Richter, G.; Karabet, A.: Tiefziehen von Blechen der Mg-Legierung AZ31, hergestellt aus stranggegossenem Ausgangsmaterial,. In: Metall - Internationale Fachzeitschrift für Metallurgie, Edition 59, Book 4, (2005), pp.207-212.

Google Scholar

[18] Droeder, K. G.: Untersuchungen zum Umformen von Feinblechen aus Magnesiumknetlegierungen. Ph.D., University Hannover, (1999).

Google Scholar

[19] El-Magd, E.; Abouridouane, M.: Einfluss der Umformgeschwindigkeit und -temperatur auf das Umformvermögen metallischer Werkstoffe unter Druckbelastung (Teilprojekt 1) und Zugbelastung (Teilprojekt 2),. In: Final report DFG SPP 1074 - Ergebnisse aus 48 Forschungsprojekten, 1999 - (2005).

DOI: 10.3139/146.030729

Google Scholar

[20] Ulacia, I., Salisbury, C.P., Hurtado, I., Worswick, M.J.: Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over wide range of strain rates and temperatures. In: Journal of Materials and Processing, 2011, pp.830-839.

DOI: 10.1016/j.jmatprotec.2010.09.010

Google Scholar

[21] Schäfer, R.; Pasquale, P.: Electromagnetic pulse forming technology. Keys for allocating the industrial market segment,. Proceedings of 4th international conference on high speed forming, 2010, Columbus, pp.16-25.

Google Scholar

[22] Masumoto, I.; Tamaki, K. & Kojima, M.: Electromagnetic Welding of Aluminum tube to Aluminum or Dissimilar Metal Cores,. Transactions of the japan Welding Society, 1985, 14 - 20.

Google Scholar

[23] T. Aizawa, M. Kashani, K. Okagawa, Application of magnetic pulse welding for aluminium alloys and spcc steel shet joints, Welding Research, 86, 2007, pp.119-124.

Google Scholar

[24] S.D. Kore, P.P. Date, S.V. Kulkarni, Electromagnetic impact welding of aluminium to stainless steel sheets, Journal of Materials Processing Technology, 208, pp.486-493, (2008).

DOI: 10.1016/j.jmatprotec.2008.01.039

Google Scholar

[25] H. Kreye, M. Hammerschmidt, U. Granz, C. -P. Woidneck, Über den Bindemechanismus beim Explosivschweißen, Schweißen und Schneiden, 37, pp.297-302, (1985).

Google Scholar