Contribution of Body Lightweight Design to the Environmental Impact of Electric Vehicles

Article Preview

Abstract:

In today's society the continuously increasing consumption of raw materials and the associated impacts on the ecosystem tend to be a frequently discussed topic. Especially automobile companies are faced to develop new driving concepts due to the emerging energy turnaround. Usually the components of the conventional drive are replaced by an electric engine including the required energy storage. Without structural changes regarding the chassis this procedure causes an increase in the vehicle ́s weight (Conversion Design). Therefore a new approach is to integrate the battery as a load-bearing member in the vehicle structure and additionally use a weight-optimized multi-material design of the body (Purpose Design). By savings of 25% of the weight of a compact-class vehicle body, a resource-saving and energy-efficient design of the entire vehicle can be achieved. Certainly the innovative multi-material construction contributes significantly to reduce the total energy consumption of the vehicle during the use phase. Based on a Lifecycle-Assessment (LCA) the environmental sustainability of the Purpose Design will be evaluated and compared to the approach of the Conversion Design. In addition to the weight savings of the multi-material body secondary weight reductions regarding the energy storage will be taken into account. The aim is to assess the ecological advantages of the lightweight solution throughout the entire product life cycle comprising the extraction of raw materials, production of the components, use of the product and end of life including the recycling of components. However, these investigations will be carried out for the modified chassis and the lightweight constructed multi-material body. Hence, the processes of the individual life cycle phases will be collected, inventorial analysis carried out and impact assessments performed. According to the LCA it will be tested, if the additional expenses in raw material extraction, production and recycling of the lightweight body justify the expected ecological advantage in the use phase. A final overall analysis will provide information on the actual efficiency and sustainability of the Purpose Design. Due to the parallel creation of the LCA data during the development process the LCA results furthermore serve to detect and monitor significant shortcomings on component and assembly level.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

329-347

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pehnt, M. et al., Elektroautos in einer von erneuerbaren Energien geprägten Energiewirtschaft. Zeitschrift für Energiewirtschaft. 35(2011)3, 230-231.

DOI: 10.1007/s12398-011-0056-y

Google Scholar

[2] Notter, D. et al., Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. Environmental Science & Technology. 44(2010)17, 6550-6556.

DOI: 10.1021/es903729a

Google Scholar

[3] Kaiser, O. S., Meyer. S., Schippl, J. (2011) Elektromobilität. ITA-Kurzstudie.

Google Scholar

[4] Volkswagen Media Services, Forschungskonsortium entwickelt Leichtbaukarosserie für Elektrofahrzeuge. https: /www. volkswagen-mediaservices. com/medias_publish/ms/content/de/pressemitteilungen/2011/12/08/forschungskonsortium. standard. gid-oeffentlichkeit. html. Accessed 8 December (2011).

Google Scholar

[5] DIN Deutsches Institut für Normung e.V. (2006) DIN EN ISO 14044. Ökobilanz – Anforderungen und Anleitungen.

Google Scholar

[6] Volkswagen Media Services, Der Golf. https: /www. volkswagen-mediaservices. com/medias_publish/ms/content/de/pressemitteilungen/2008/03/04/der_golf. standard. gid-oeffentlichkeit. html. Accessed 4 March (2008).

Google Scholar

[7] Eckstein, L. et al. (2010) Analyse sekundärer Gewichtseinsparungspotentiale in Kraftfahrzeugen.

Google Scholar

[8] Stichling, J., Hasenberg, V. (2010) Recycling im Automobil-Leichtbau.

Google Scholar

[9] DIN Deutsches Institut für Normung e.V. (2009) Ökobilanz - Grundsätze und Rahmenbedingungen.

Google Scholar

[10] Bauer, C., Poganietz, W. -R. (2007) Prospektive Lebenszyklusanalyse oder die Zukunft der Ökobilanz. Technikfolgenabschätzung – Theorie und Praxis, 16(2007)3.

DOI: 10.14512/tatup.16.3.17

Google Scholar

[11] Poganietz, W. -R. (2008) Consequential LCA – eine notwendige Weiterentwicklung des LCA?. Workshops Energiesystemanalyse, , 27. November 2008 at KIT Zentrum Energie, Karlsruhe.

Google Scholar

[12] Verband der Automobilindustrie - VDA (2011) Automobilproduktion, http: /www. vda. de/de/zahlen/jahreszahlen/automobilproduktion. Accessed 9 November (2011).

Google Scholar

[13] Walk, W. (2010).

Google Scholar

[15] European Commission (2010) ILCD handbook – General guide for Life Cycle Assesement, Luxemburg: Publications office of the European Union, (2010).

Google Scholar

[16] Frischknecht, R. (2000) Allocation in Life Cycle Inventory Analysis for Joint Production. International Journal of LCA, 5(2000)2.

DOI: 10.1007/bf02979729

Google Scholar

[17] Frischknecht, R., Life cycle inventory modeling in the Swiss national database ECOINVENT 2000. Hilti, L. M.; Gilgen, P. W. (editor): Sustainability in the Information Society, 15th International Symposium Informatics for Environmental Protection, ETH Zürich, Metropolis Verlag, Marburg, 2001, 699-708.

Google Scholar

[18] Braess, H. -H., Vieweg-Handbuch Kraftfahrzeugtechnik, Vieweg, Wiesbaden, (2007).

Google Scholar

[19] Verein Deutscher Ingenieure, VDI-Berichte 1543 – Entwicklungen im Karosseriebau, VDI-Verl, Düsseldorf, (2000).

Google Scholar

[20] Beiss, P., Umdruck Werkstoffkunde 1, 2009, Druck-& Verlagshaus Mainz GmbH, Aachen.

Google Scholar

[21] Fritz, A. H., Fertigungstechnik, Springer, Berlin (2008).

Google Scholar

[22] Friedel, M., Modularer Baukasten zur Realisierung von Rohbauten, Fellbach (2003).

Google Scholar

[23] Löschmann, F. (2003) Der neue Golf V von Volkswagen – Umbruch in der Karosseriebautechnik, Fellbach, (2003).

Google Scholar

[24] Dilthey, U., Trube, S. et al., Schweißtechnische Fertigungsverfahren-Schweiß- und Schneidtechnologien, 3. Auflage, Springer, Berlin, (2005).

Google Scholar

[25] Vogt, M., Mechanisiertes MIG-Schweißen von Magnesiumlegierungen, (2005).

Google Scholar

[26] Verein Deutscher Ingenieure, VDI-Berichte 1307 – Ganzheitliche Betrachtungen im Automobilbau. VDI-Verl, Düsseldorf (1996).

Google Scholar

[27] Klöpffer, W., Ökobilanz (LCA) – Ein Leitfaden für Ausbildung und Beruf. Wiley-VCH, Weinheim, (2009).

DOI: 10.1002/9783527627158

Google Scholar

[28] Gerschler, J.B., Sauer, D.U., Batterien für Elektrofahrzeuge-Stand und Ausblick, Berliner Energietage (2010).

Google Scholar

[29] VDE, Roland Berger, Nationale Plattform Elektromobilität (2012) E-Mobility- Batteriesystem. http: /www. vde. com/de/E-Mobility/Fahrzeugtechnik/Batteriesystem/Seiten/default. aspx., Accessed 25 March. (2012).

Google Scholar

[30] VDI, SB LiMotiv, Luftiger, Akku für weitreichende Elektromobiltität. http: /www. vdi-nachrichten. com/artikel/Luftiger-Akku-fuer-weitreichende-Elektromobilitaet/55376/2. Accessed 14 November (2011).

Google Scholar

[31] Hören, B., Lesemann, M., Dux, E., Finaler Stand - Konservatives Konzept und Zielgewicht (Light-eBody). Aachen, Januar (2012).

Google Scholar

[32] Kampker, A., Grundlagen zur Produktion von HV-Batterien. unpublished manuscript, Autouni, Wolfsburg, (2011).

Google Scholar

[33] Kampker, A., Franzkoch, B., Nowacki, C., Networked product and production development for lithium-ion batteries. 4th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV2011), Montreal, Canada (2011).

DOI: 10.1007/978-3-642-23860-4_35

Google Scholar

[34] NPE – Nationale Plattform Elektromobilität, Zwischenbericht. Berlin, November (2010).

Google Scholar

[35] Hören, B., Dokumentation Arbeitstreffen AP1 im Rahmen des Light-eBody Projektes. Aachen, November (2011).

Google Scholar

[36] Helms, H. et al., Electric vehicle and plug-in hybrid energy efficiency and life cycle emissions, (2010).

Google Scholar

[37] Althaus, H. -J., et al., Vergleichende Ökobilanz individueller Mobilität, (2010).

Google Scholar

[38] Blesl, M. et al., Entwicklungsstand und –perspektiven der Elektromobilität. 18th International Symposium Transport and Air Pollution, (2010).

Google Scholar

[39] Wellbrock, P. et al., Bewertung der CO2-Emissionen von Elektrofahrzeugen - Stand der wissenschaftlichen Debatte, (2011).

Google Scholar

[40] Buchert, M. et al., Ökobilanz zum Recycling von Lithium-Ionen-Batterien, (LithoRec), (2011).

Google Scholar

[41] Treffer, F. et al., Entwicklung eines realisierbaren Recyclingkonzeptes für die Hochleistungsbatterien zukünftiger Elektrofahrzeuge – Lithium-Ionen Batterierecycling Initiative (LiBRi), (2011).

Google Scholar

[42] European Council for automotive R&D. Well-to-Wheel analysis of future automotive fuels and powertrains in the European context, (2006).

Google Scholar