Wear Protection of Deep Drawing Tools by Systematic Optimization of Highly Stressed Surfaces

Article Preview

Abstract:

The automotive sector is one of the largest energy consumers in Germany. Requests from politics and industry to significantly reduce emissions require new developments during utilization as well as during production phase. In line with the framework concept "InnoCaT", where more than 60 companies and research facilities from Germany take part, possibilities for producing companies are developed and analyzed to reduce the resource and energy consumption and by this reducing costs along the entire process chain of car body manufacturing. One approach to design car bodies lighter and more efficiently is to use aluminium and high strength steels. By this means weight and sheet thickness are reduced. However higher strengths of the steels and the adhesion affinity of aluminium significantly increase the requirements regarding the used tool steel. Thus grooves or galling appear more frequent at highly stressed surfaces. To assure high lifetimes and by this increase especially the resource efficiency concerning use of material and setting-up times within the press plant, a local optimization at the highly stressed surfaces is necessary. For this a FEM/BEM-tool for a time efficient and exact calculation of the occurring tool loads for complex die profiles is developed. Based on this development of load calculation a shape-optimization is performed at the corresponding areas. After the geometric optimization of the tool a local laser surface treatment for further wear protection is carried out using laser cladding or laser alloying/ -dispersing. By combining the technologies a highly wear resistant surface is achievable, which increases the tool's lifetime as well as the reproducibility within production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

439-453

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Klocke, F.; Schuh, G.; Brecher, C.; Schmitt, R.: Excellence in Production, Wissenschaftsverlag des Instituts für Industriekommunikation und Fachmedien an der RWTH Aachen, WZL RWTH Aachen, Aachen, (2007).

DOI: 10.17973/mmsj.2021_7_2021057

Google Scholar

[2] Shi, X.; Chen, J.; Peng, Y.; Ruan, X.: A new approach of die shape optimization for sheet metal forming processes. Journal of Materials Processing Technology 1, 2004, p.35–42.

DOI: 10.1016/j.jmatprotec.2004.02.033

Google Scholar

[3] Engel, U.: Prediction of tool failure from a probabilistic point of view, Journal of Materials Processing Technology 42, 1994, p.1–13.

DOI: 10.1016/0924-0136(94)90072-8

Google Scholar

[4] Blum, C.; Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison, ACM Comput. Surv. 3, 2003, p.268–308.

DOI: 10.1145/937503.937505

Google Scholar

[5] Altan, T.; Vazquez, V.: Numerical Process Simulation for Tool and Process Design in Bulk Metal Forming, CIRP Annals – Manufacturing Technology 2, 1996, p.599–615.

DOI: 10.1016/s0007-8506(07)60514-9

Google Scholar

[6] Roll, K.: Simulation of Sheet Metal Forming – Necessary developments in the future, In: LS-Dyna Anwenderforum, 2008, p.59–68.

Google Scholar

[7] Roy, R.; Hinduja, S.; Teti, R.: Recent advances in engineering design optimisation: Challenges and future trends, CIRP Annals - Manufacturing Technology 2, 2008, p.697–715.

DOI: 10.1016/j.cirp.2008.09.007

Google Scholar

[8] Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, Evolutionary Computation, IEEE Transactions, 2006, p.281–295.

DOI: 10.1109/tevc.2005.857610

Google Scholar

[9] Hortig D.; Schmoeckel, D.: Analysis of local loads on the draw die profile with regard to wear using the FEM and experimental investigations, Journal. of Materials Processing Technology. 1, 2001, p.153–158.

DOI: 10.1016/s0924-0136(01)00757-9

Google Scholar

[10] Clausen, P.M.; Pedersen, C.D.W.: Non-Parametric Large Scale Structural Optimization for Industrial Applications, III European Conference on Computational Mechanics, Solids, Structures and Coupled Problems in Engineering, C.A. Mota Soares et. al. (eds. ), Lisbon, Portugal, 5–8 June 2006, p.1.

DOI: 10.1007/1-4020-5370-3_482

Google Scholar

[11] Harksen, S.; Glaeser, T.; Bleck, W.; Klocke, F.: Beurteilung von Temperaturwechsel und mechanischem Verschleiß auf duplexbehandeltem Warmarbeitsstahl. Tool steels – deciding factor in worldwide production. Vol. 1. Tool 09, Proceedings of the 8th International Tooling Conference, 8ITC, Mainz, 02. 06. –04. 06. 2009. RWTH Aachen (2009).

Google Scholar

[12] Amende, W.; Oberflächenbehandlung mit Laserstrahlung in H. Treiber: Der Laser in der Fertigungstechnik, Hoppenstedt Technik, Darmstadt (1990).

Google Scholar

[13] König, W.; Roznoki, L.; Schmitz-Justen, Cl; Treppe, F: Oberflächenveredeln mit Laserstrahlung, Laser and Optoelektronik 20, Nr. 2 (1988).

Google Scholar

[14] Klocke, F.; Scheller, D.: Process monitoring in laser surface treatment operations with reflection and temperature measurement, Production Engineering, München volume 4 (1997).

Google Scholar

[15] Vilar, R.: Laser Alloying and Laser Cladding, Deparamento de Engenharia de Materiais, Instituto Superior Tecnico; Materials Science Forum (Volume 301), Lasers in Materials Science, pp.229-252.

DOI: 10.4028/www.scientific.net/msf.301.229

Google Scholar

[16] Partes K.: Analytical model of the catchment efficiency in high speed laser cladding. (2009) Surf. Coat. Technol. doi: 10. 1016/j. surfcoat. 2009. 07. 041.

Google Scholar

[17] Zienkiewicz, O.C.; Kelly, D.W.; Bettess, P.: The coupling of the finite element method and boundary solution procedures. International Journal for Numerical Methods in Engineering 2, 1977, p.355–375.

DOI: 10.1002/nme.1620110210

Google Scholar

[18] Klocke, F.; Bäcker, V.; Feldhaus, B.; Zeppenfeld, C.; Rjasanow, S.; Grzhibovskis, R.: Coupled FE/BE-Analysis of the Deep Rolling Process, Advanced Technology of Plasticity, 2008, p.666–671.

Google Scholar

[19] Bäcker, V.; Klocke, F.; Wegner, H.; Timmer, A.; Grzhibovskis, R.; Rjasanow, S.: Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling, IOP Conference Series: Materials Science and Engineering, 2010, pp.121-134.

DOI: 10.1088/1757-899x/10/1/012134

Google Scholar

[20] Bäcker, V.; Klocke, F.; Timmer, A.; Mattfeld, P.; Schongen, F.; Grzhibovskis, R.; Rjasanow, S.: Time Efficient Numerical Tool Optimization for Wear Reduction in Deep Drawing. In: Proceedings of 10th Int. Conf. Techn. Plast., ICTP. Aachen, September 25. -30. 2011. Düsseldorf: Stahleisen, 2011, S. 390-395.

DOI: 10.4028/www.scientific.net/kem.554-557.317

Google Scholar

[21] Bäcker, V.; Numerical Tool Optimization in Deep Drawing. Diss. RWTH Aachen, (2011).

Google Scholar