Grinding of Riblet Structures on Free Formed Compressor Blades

Article Preview

Abstract:

The effectiveness of gas turbines can be improved significantly by decreasing the friction losses. Compared to smooth surfaces riblet-structures have been proven to reduce skin friction in turbulent flow up to 10 %. For the technical application on compressor blades in turbo machines, micro riblet-structures with a riblet width between 20 μm and 120 μm and a depth of the half width are required. Furthermore, the application on compressor blades needs ideal riblet-geometries with an aspect ratio of 0.5, trapezoid groove geometry and a shape accuracy of the compressor blade about 10 μm. This paper presents the relevant influencing factors on the overall shape accuracy as well as the riblet geometry in five axes grinding of riblet-structures on double curved compressor blades. The results show, that the shape accuracy is affected by the CAD data and the macro-geometry of the grinding wheel. Therefore, specialized requirements on the CAD data were defined in order to increase the shape accuracy. To decrease the influence of the grinding wheel geometry on the overall shape geometry, a method adjusting the grinding wheel geometry on double curved surfaces was developed. Furthermore, the effect of the 5 axes kinematic on the aspect ratio and the profile wear was examined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

463-473

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gümmer, V.: Pfeilung und V-Stellung zur Beeinflussung der dreidimensionalen Strömung in Leiträdern transsonischer Axialverdichter, Fortschritt-Berichte VDI Reihe 7 Nr. 384, VDI Verlag, Düsseldorf, (2005).

DOI: 10.1002/zamm.19770570816

Google Scholar

[2] Ninnemann, T.; Ng W. -F.: Loss Reduction Using Riblets on a Supersonic Through-flow Fan Blade Cascade. In: Transactions of the ASME, Series I: Journal of Fluids Engineering Vol. 126 (4), p.642–649, (2004).

DOI: 10.1115/1.1667883

Google Scholar

[3] Bechert, D. -W.; Bartenwerfer, M.: The Viscous Flow on Surfaces with Longitudinal Ribs. Journal of Fluid Mechanics, Vol. 206, pp.105-129, (1989).

DOI: 10.1017/s0022112089002247

Google Scholar

[4] Siegel, F.; Klug, U.; Kling, R.; Ostendorf, A: Extensive Micro-Structuring of Metals using Picosecond Pulses - Ablation Behavior and Industrial Relevance. Proceedings of LPM 2008, 9th International Symposium on Laser Precision Manufacturing, 17-20 Juni, Quebec, Kanada, (2008).

DOI: 10.2961/jlmn.2009.02.0006

Google Scholar

[5] Uhlmann, E.; Piltz, S.; Doll, U.: Funkenerosion in der Mikrotechnik. Einsatzgebiete und Verfahrensgrenzen. Werkstatttechnik wt-online, No. 12, pp.733-737, (2004).

DOI: 10.37544/1436-4980-2001-12-733

Google Scholar

[6] Fischer, S.: Fertigungssysteme zur spanenden Herstellung von Mikrostrukturen. Dr. -Ing. Dissertation, RWTH, Aachen, (2000).

Google Scholar

[4] Denkena, B.; Köhler, J.; Wang, B.: Manufacturing of functional riblet structures by profile grinding. In: CIRP Journal of Manufacturing Science and Technology, Vol. 3 (1), pp.14-26, (2010).

DOI: 10.1016/j.cirpj.2010.08.001

Google Scholar

[5] Lietmeyer, C.; Oehlert, K.; Seume J. R.: Optimal application of riblets on compressor blades and their contamination behaviour, Proc. of ASME Turbo Expo, Vancouver, Canada, GT2011-46855, (2011).

DOI: 10.1115/gt2011-46855

Google Scholar

[6] Weinert, K.; Blum H.; Jansen, T.; Rademacher, A.: Simulation based optimization of NC-shape grinding process with toroid grinding wheels, In: Production Engineering - Research and Development (WGP), Vol. 1 (3), p.245, 252, (2007).

DOI: 10.1007/s11740-007-0042-8

Google Scholar

[7] Brinksmeier, E.; Riemer, O.; Osmer, J.: Tool Path Generation for Ultra-precision Machining of Free-form Surfaces, In: Production Engineering - Research and Development (2), pp.241-246, (2008).

DOI: 10.1007/s11740-008-0086-4

Google Scholar

[8] Tönshoff, H.K.; Denkena, B.; Böß, V., Urban, B.: Automated Finishing of Dies and Molds, In: Production Engineering - Research and Development 9 (2), pp.1-4, (2002).

Google Scholar

[9] Lasemi, A.; Xue, D.; Gu, P.: Recent development in CNC machining of freeformed surfaces: A state-of-the-art review, In: Computer-Aided Design, Vol. 42 (7), pp.641-654, (2010).

DOI: 10.1016/j.cad.2010.04.002

Google Scholar

[10] Okuyama, S.; Kitajima, T.; Yui, A.: Theoretical Study on the Effect of Form Error of Grinding Wheel Surfaces under Free Form Grinding, In: Key Engineering Materials, Vol. 257-258, pp.147-152, (2004).

DOI: 10.4028/www.scientific.net/kem.257-258.147

Google Scholar

[11] Xie, J.; Zheng J.H.; Zhou, R.M.; Lin, B.: Dispersed grinding wheel profiles for accurate freeform surfaces, In: International Journal of Machine Tools & Manufacture, Vol. 51, p.536–542, (2011).

DOI: 10.1016/j.ijmachtools.2011.03.002

Google Scholar

[12] Van der Meer, M.: Bearbeitung keramischer Funktionsflächen für Knieimplantate, Dr. -Ing. Dissertation, Leibniz Universität Hannover, (2012).

Google Scholar

[13] Wang, B.: Herstellung funktionaler Riblet-Strukturen durch Profilschleifen, Dr. -Ing. Dissertation, Leibniz Universität Hannover, (2011).

Google Scholar

[14] Kaiser, D.: Product information. Diamantwerkzeuge GmbH, Germany, (2008).

Google Scholar