Lifecycle Oriented Assessment of Resource Efficiency in the Commercial Vehicle Industry

Article Preview

Abstract:

Resource efficiency in the commercial vehicle industry is highly dependent on the application profile of the vehicle. In order to assess the resource efficiency of commercial vehicles, the production, the usage and the product itself have to be taken into account. Therefore, a lifecycle oriented approach is necessary. This paper presents a lifecycle oriented assessment methodology for resource efficiency, including the three pillars production, usage, and product. First, resources consumed along the lifecycle of a commercial vehicle are identified and classified. In the second step, we show how to gather interdependencies between the pillars production, usage, and product as well as interdependencies within the pillars. The third step provides a decision model to evaluate suitable measures for increasing resource efficiency. The methodology is illustrated by an example from the commercial vehicle industry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

475-487

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Schuh G, Stoelzle W, Straube F (editor) (2008) Anlaufmanagement in der Automobilindustrie erfolgreich umsetzen. Springer, Berlin, Heidelberg.

DOI: 10.1007/978-3-540-78407-4

Google Scholar

[2] Schuh G, Kampker A (editor) (2011) Strategie und Management produzierender Unternehmen. Springer, Berlin, Heidelberg.

Google Scholar

[3] DIN Deutsches Institut für Normung e.V. (2005) ISO 9000: Quality management systems - Fundamentals and Vocabulary. trilingual version. Beuth, Berlin.

Google Scholar

[4] Bundesministerium für Wirtschaft und Technologie (2006) BMWI Energierohstoffbericht. http: /www. bmwi. de/BMWi/Redaktion/PDF/E/energierohstoffbericht, property=pdf, bereich=bmwi, sprache=de, rwb=true. pdf. Accessed 20 March (2012).

DOI: 10.1515/9783110505405-004

Google Scholar

[5] Ashby M, Jones D (2006) Engineering Materials 1 - An introduction to properties, applications and designs. Elsevier Ltd.

Google Scholar

[6] United States Geological Survey (USGS) (2012) Iron Ore - Statistics and Information. http: /minerals. usgs. gov/minerals/pubs/commodity/iron_ore/mcs-2012-feore. pdf. Accessed 09 March (2012).

Google Scholar

[7] Bundesagentur für Geowissenschaft und Rohstoffe (2006).

Google Scholar

[8] United States Geological Survey (USGS) (2012) Commodity - Statistics and Information. Statistics and information on the worldwide supply of, demand for, and flow of minerals and material. Accessed 09 March (2012).

Google Scholar

[9] European Union (2007).

Google Scholar

[10] European Union (2004).

Google Scholar

[11] European Union (2006) Directive 2006/26/EC on energy end-use efficiency and energy services. Official Journal of the European Union. http: /ec. europa. eu/. Accessed 20 March (2012).

Google Scholar

[12] European Union (2009) Directive 2009/125/EC on establishing a framework for the setting of eco design requirements for energy-related products. http: /ec. europa. eu/. Accessed 20 March (2012).

Google Scholar

[13] International Organization for Standardization (2011) ISO/CD 14955: Machine tools - Environmental evaluation of machine tools - Part 1: Design methodology for energy-efficient machine tools. Geneva.

DOI: 10.3403/30333287

Google Scholar

[14] California Air Resources Board (CARB) (2012) The California Low-Emission Vehicle Regulations. http: /www. arb. ca. gov/msprog/levprog/cleandoc/cleancomplete_lev-ghg_regs_12-10. pdf, Accessed 16 March (2012).

Google Scholar

[15] Environmental Protection Agency (EPA) (2012) Emission Standards Reference Guide. http: /www. epa. gov/otaq/standards/allstandards. htm, Accessed 16 March (2012).

Google Scholar

[16] Unmueßig B, Cramer S (2008) Climate Change in Africa. GIGA Focus. German Institute of Global Area Studies (Publ. ). www. giga-hamburg. de/giga-focus. Accessed 09 March (2012).

DOI: 10.1163/1872-9037_afco_asc_1224

Google Scholar

[17] Harmeling S (2012) Global Climate Risk Index 2012. Briefing Paper. http: /www. germanwatch. org/klima/cri. pdf. Accessed 12 March (2012).

Google Scholar

[18] Saikawa E, et. al. (2011) The impact of China's vehicle emissions on regional air quality in 2000 and 2020: a scenario analysis. Atmospheric Chemistry and Physics. 11/18: 9465-9484.

DOI: 10.5194/acp-11-9465-2011

Google Scholar

[19] Kuhrke B, Erdle F (2010) Energieeffizienz als Investitionsentscheidung. Werkstatt und Betrieb 01-02: 30-33.

Google Scholar

[20] de Chiffre L, Tosello G, Píska M, Müller (2009) Investigation of the reaming process using minimal quantity lubrication. CIRP Journal of Manufacturing Science and Technology. doi: 10. 1016/j. cirpj. 2009. 08. 004.

DOI: 10.1016/j.cirpj.2009.08.004

Google Scholar

[21] Milberg J, Sigl M (2008) Electron sintering of metal power. Production Engineering. Springer, Berlin, 2: 117-122.

Google Scholar

[22] Devoldere T, Dewulf W, Deprez W et al (2007).

Google Scholar

[23] Neugebauer R, Wabner M, Rentzsch, Ihlenfeld S (2001) Structure princibles of energy efficient machine tools. CIRP Journal of Manufacturing Science and Technology. doi: 10. 1016/j. cirpj. 2011. 06. 017.

DOI: 10.1016/j.cirpj.2011.06.017

Google Scholar

[24] Brecher C, Boos W, Klein W et al (2009) Ressourceneffizienzbewertung einer Werkzeugmaschine zur Steigerung ihrer Wirtschaftlichkeit. ZWF 104/9: 711-715.

DOI: 10.3139/104.110151

Google Scholar

[25] Rebhan E (2002) Energiehandbuch – Gewinnung, Wandlung und Nutzung von Energie. Springer, Berlin.

Google Scholar

[26] Blank S, Kormann G, Berns K (2011) A Modular Sensor Fusion Approach for Agricultural Machines. Proceedings of the XXXVI CIOSTA & CIGR Section V Conference. Vienna, Austria.

Google Scholar

[27] Wiedemann J (2006) Leichtbau – Elemente und Konstruktion. Springer, Berlin.

Google Scholar

[28] Dogan E, Steg L, Delhomme P (2011) The influence of multiple goals on driving behavior: The case of safety, time saving, and fuel saving. Accident Analysis & Prevention. 43/5: 1635–1643.

DOI: 10.1016/j.aap.2011.03.002

Google Scholar

[29] Schmidt M (2011) Energie- und Stoffstromanalyse. RKW Rationalisierungs- und Innovationszentrum der Deutschen Wirtschaft e.V. Kompetenzzentrum, Faktenblatt: 1/(2011).

Google Scholar

[30] DIN Deutsches Institut für Normung e.V. (2006) DIN EN ISO 14040: Environmental Management – life cycle assessment – Principles and framework. trilingual version. Beuth, Berlin.

Google Scholar

[31] VDI Verein Deutscher Ingenieure e.V. (2012) VDI-Richtlinie 4600: Cumulative energy demand (KEA) - Terms, definitions, methods of calculation. Issue German/English. Beuth, Berlin.

Google Scholar

[32] Erlach K, Westkämper E (editor) (2009) Energiewertstrom – Der Weg zur effizienten Fabrik. Fraunhofer Verlag, Stuttgart.

Google Scholar