Factory Carbon Footprint Design

Article Preview

Abstract:

Energy consumption and emissions are the two main sustainability issues of German companies. The main reasons for efficiency increase and emission reduction are not, as often proclaimed, energy costs, but the demands of customers and legislators for low carbon emissions. Particularly at machine level and process chain level various methods for analysis and improvement of the energy efficiency already exist. At factory level there is no systematic approach. The method Factory Carbon Footprint Design is an appropriate tool for that issue. The method is derived from the activity-based costing method and has two main parts: The Activity-based Carbon Footprint Accounting and the Target Carbon Footprint Design. Using the Activity-based Carbon Footprint Accounting, the carbon footprint of all energy consumers can be allocated to the goods produced in the factory. This contains not only the carbon footprint of the manufacturing machines, but also the periphal equipment and the administration and other indirect parts of the factory. The Target Carbon Footprint Design is a systematic approach to reduce the overall carbon footprint of a factory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

455-462

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] VDI Zentrum Ressourceneffizienz GmbH: Was ist Ressourceneffizienz? URL: http: /www. vdi-zre. de/home/was-ist-re/glossar/r/ [Letzter Aufruf: 30. 01. 2012].

Google Scholar

[2] o.V.: Gut sein rechnet sich, WirtschaftsWoche, 29. 11. (2010).

Google Scholar

[3] Global Footprint Network: Footprint der Welt – Passen wir noch auf den Planeten? URL: http: /www. footprintnetwork. org/de/index. php/GFN/page/ world_footprint/ [letzter Abruf 06. 12. 2009].

Google Scholar

[4] Herrmann, C.: Ganzheitliches Life Cycle Management. Nachhaltigkeit und Lebenszyklusorientierung in Unternehmen, Berlin, Springer-Verlag, (2010).

Google Scholar

[5] Deutsche Post AG: Zukunftstrend Nachhaltige Logistik, Bonn, 2010, S. 49.

Google Scholar

[6] Carbon Disclosure Project: Carbon Disclosure Project - Supply Chain Report 2011, (2011).

Google Scholar

[7] Schröter, M.; Weißfloch, U.; Buschak, D.: Energieeffizienz in der Produktion . Wunsch oder Wirklichkeit?, Karlsruhe, 2009, S. 9.

Google Scholar

[8] Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: Verordnung über die Zuteilung von Treibhausgas-Emissionsberechtigungen in der Handelsperiode 2013 bis 2020, (2011).

DOI: 10.1007/978-3-642-29608-6_5

Google Scholar

[9] Sommer, S.: Industrie im Klima-Nahkampf, manager magazin, 05. 01. (2011).

Google Scholar

[10] Schuh, G.; Kampker, A.; Franzkoch, B.; Kamp, S.: Energieeffiziente Fabrik – Vom Klimaschutz zur Wirtschaftlichkeit. In: Eversheim, W. et al.: Ressourceneffiziente Produktion, Apprimus Verlag, Aachen, 2011, S. 239-260.

Google Scholar

[11] Kampker, A.; Gartzen, T.; Kamp, S.: Intelligente Instandhaltung, Energy2. 0, Heft 8, 2011, S. 30-32.

Google Scholar

[12] Erlach, K.; Westkämper, E.: Energiewertstrom, Fraunhofer Verlag, Stuttgart, (2009).

Google Scholar

[13] Reinhart, G. et al.: Energiewertstromdesign, wt online, Heft 4, S. 253-260.

Google Scholar

[14] Jiménez-González, C. et al.: Methodology for Developing Gate-to-Gate Life Cycle Inventory Information, The International Journal of Life Cycle Assessment, Heft 3, 2000, S. 153-159.

DOI: 10.1007/bf02978615

Google Scholar

[15] World Resources Institute, World Business Council for Sustainable Development (Hrsg. ): GHG Protocol - A Corporate Accounting and Reporting Standard, (2004).

Google Scholar

[16] Schenk, M.; Wirth, S.: Fabrikplanung und Fabrikbetrieb, Springer Verlag, Berlin, (2004).

Google Scholar

[17] Horvath, P.: Target Costing, Schäffer Poeschel, Stuttgart, (1993).

Google Scholar